Home / Regular Issue / JST Vol. 31 (5) Aug. 2023 / JST-3836-2022


The Grease Formulation Using Waste Substances from Palm Oil Refinery and Other Industrial Wastes: A Review

Muhammad Auni Hairunnaja, Mohd Aizudin Abd Aziz, Nur Amira Fatihah Bashari, Mohd Azmir Arifin, Navinash Nedumaran, Khairuddin Md Isa and Umi Fazara Md Ali

Pertanika Journal of Science & Technology, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.25

Keywords: Grease formulation, spent bleaching earth, waste cooking oil

Published on: 31 July 2023

Many applications use Spent Bleaching Earth (SBE) despite being considered hazardous waste from the palm oil refinery process. Its production increases yearly, similar to waste cooking oil (WCO). The SBE is known as a thickener in grease formulation. The same goes for red gypsum, waste motor oil, stearic acid, and lithium hydroxide monohydrate. They are all considered thickeners but have different durability in protecting base oil in grease. Then, previous studies revealed their performances with side effects detection against the environment and human bodies. Cooking oil is a heat transfer medium for serving foods with higher amounts of unsaturated fatty acids. The number of fatty acids might change after cooking oil consumption and become highly demanded due to the chemical properties of density, viscosity and fatty acids. Nowadays, people lack awareness of the importance of recycling palm oil waste. They intend to dispose of it instead of recycling it for sustainable energy resources. Therefore, this paper will discuss the grease formulation, contaminant available in WCO, its treatment, issues regarding different thickener consumption, treatment against Spent Bleaching Earth (SBE), and propose the safe thickener and additives for future intakes. This study found that adding Fume Silica (F.S.) as a thickener and Molybdenum Disulfide (MoS2) enhanced the grease stability. Further treatment against SBE (remove residue oil) and WCO (metal elements, undesired impurities and water content) is necessary for providing good quality formulated grease.

  • Abdulbari, H. A., Oluwasoga Akindoyo, E., & Mahmood, W. K. (2015). Renewable resource-based lubricating greases from natural and synthetic sources: Insights and future challenges. ChemBioEng Reviews, 2(6), 406-422. https://doi.org/10.1002/cben.201500006

  • Abdulbari, H. A., Rosli, M. Y., Abdurrahman, H. N., & Nizam, M. K. (2011). Lubricating grease from spent bleaching earth and waste cooking oil: Tribology properties. International Journal of the Physical Sciences, 6(20), 4695-4699. https://doi.org/10.5897/IJPS11.561

  • Abdulbari, H., Zuhan, N., & Mahmood, W. (2017). Biodegradable grease from palm oil industry wastes. Journal of Advanced Research in Fluid Flow, 1-10

  • Adhikari, C., Proctor, A., & Blyholder, G. D. (1994). Diffuse-reflectance fourier-transform infrared spectroscopy of vegetable oil triglyceride adsorption on silicic acid. Journal of the American Oil Chemists’ Society 71, 589-594. https://doi.org/10.1007/BF02540584

  • Afzan, M., Ithnin, A. M., & Jazair, W. (2020). Combustion performance and exhaust emission analysis of Spent Bleaching Earth (SBE) oil as burner’s fuel. In U. Sabino, F. Imaduddin & A. R. Prabowo (Eds.), Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials (pp. 713-721). Springer. https://doi.org/10.1007/978-981-15-4481-1_68

  • Almeida, D. T., Viana, T. V., Costa, M. M., de Santana Silva, C., & Feitosa, S. (2019). Effects of different storage conditions on the oxidative stability of crude and refined palm oil, olein and stearin (Elaeis guineensis). Food Science and Technology, 39(1), 211-217. https://doi.org/10.1590/fst.43317

  • Anderson, K. J. (1991). A history of lubricants. MRS Bulletin, 16(10), 69-69. https://doi.org /10.1557/S0883769400055895

  • Antony, J., Mittal, B., Naithani, K., Misra, A., & Bhatnagar, A. (1994). Molybdenum disulphide combinations in lubricating greases. Wear, I74, 33-37

  • Awogbemi, O., Onuh, E., & Inambao, F. L. (2019). Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. International Journal of Low-Carbon Technologies, 14(3), 417-425. https://doi.org/10.1093/ijlct/ctz038

  • Barthel, H., Rösch, L., & Weis, J. (2005). Fumed silica ‐ Production, properties, and applications. In N. Auner & J. Weis (Eds.), Organosilicon Chemistry II (pp.761-778). Wiley. https://doi.org/10.1002/9783527619894.ch91

  • Bei, H., George, E., Kenik, E., & Pharr, G. (2003). Directional solidification and microstructures of near-eutectic Cr–Cr3Si alloys. Acta Materialia, 51(20), 6241-6252. https://doi.org/10.1016/S1359-6454(03)00447-6

  • Chanrai, N. G., & Burde, S. G. (2004). Recovery of oil from spent bleaching earth. US Patent, 6(780), 321.

  • Cheong, K., Loh, S., & Salimon, J. (2013). Effect of spent bleaching earth based bio organic fertilizer on growth, yield and quality of eggplants under field condition. AIP Conference Proceedings, 1571, 744-748. https://doi.org/10.1063/1.4858743

  • Cui, X., Chen, H., & Yang, T. (2016). Research progress on the preparation and application of nano-sized molybdenum disulfide. Acta Chimica Sinica, 74, 392-400. https://doi.org/10.6023/A15110712

  • De Leonardis, A., Macciola, V., & Falice, M. (2000). Copper and iron determination in edible oil by graphite furnace atomic absorption spectrometry after extraction with dilute nitric acid. International Journal of Food Science & Technology, 35(4), 371-375. https://doi.org/10.1046/j.1365-2621.2000.00389.x

  • Dees, S., Gasteuil, A., Kaufmann, R. K., & Man, M. (2008). Assessing the factors behind oil price changes (Working Paper No. 855). European Central Bank. https://www.researchgate.net/publication/4890967_Assessing_the_factors_behind_oil_price_changes

  • Delaneau, J. (2021). What is stearic acid for? Oceanica Skincare. https://oceanicaskin.care/blogs/news/what-is-stearic-acid-for

  • Dermawan, D., & Ashari, M. L. (2018). Studi pemanfaatan limbah padat industri pengolahan minyak kelapa sawit spent bleaching earth sebagai pengganti agregat pada campuran beton [Study on the utilization of palm oil processing industry solid waste spent bleaching earth as a substitute for aggregate in concrete mixtures]. Jurnal Presipitasi Media Komunikasi dan Pengembangan Teknik Lingkungan, 15(1), 7-10. https://doi.org/10.14710/presipitasi.v15i1.7-10

  • Dye, J. L. (2021). Lithium. Encyclopedia Britannica. https://www.britannica.com/science/lithium-chemical-element

  • Epshteyn, Y., & Risdon, T. J. (2010, January 28-30). Molybdenum disulfide in lubricant applications – A review. [Paper presentation]. Proceedings of the 12 Lubricating Grease Conference, Goa, India. http://www.nlgi-india.org/images/PDF/Yakov%20Ephsteyn.pdf

  • Farid, M. A., Roslan, A. M., Hassan, M. A., Hasan, M. Y., Othman, M. R., & Shirai, Y. (2020). Net energy and techno-economic assessment of biodiesel production from waste cooking oil using a semi-industrial plant: A Malaysia perspective. Sustainable Energy Technologies and Assessments, 39, Article 100700. https://doi.org/10.1016/j.seta.2020.100700

  • Fattah, R. A., Mostafa, N. A., Mahmoud, M. S., & Abdelmoez1, W. (2014). Recovery of oil and free fatty acids from spent bleaching earth using sub-critical water technology supported with kinetic and thermodynamic study. Advances in Bioscience and Biotechnology, 5(3), 261-272. https://doi.org/10.4236/abb.2014.53033

  • Feo, G. D., Domenico, A. D., Ferrara, C., Abate, S., & Osseo, L. S. (2020). Evolution of waste cooking oil collection in an area with long-standing waste management problems. Sustainability, 12(20), Article 8578. http://dx.doi.org/10.3390/su12208578

  • Fink, J. (2021). Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids (3rd ed.). Gulf Professional Publishing. https://doi.org/10.1016/C2020-0-02705-2

  • Garcia, D. D., Latorre, R. R., Sultan, N. M., Yerba, O. R., Palacios, E. A., & Cano, A. D. (2019). Silicosis: Origins and consequences. American Journal of Medical Sciences and Medicine, 7(3), 60-63. https://doi.org/10.12691/ajmsm-7-3-2

  • Godson, T. E., & Vinoth, E. (2015). Biodiesel production from waste cooking oil. International Journal of Students’ Research In Technology & Management, 3(8), 448-450. https://doi.org/10.18510/ijsrtm.2015.383

  • Gordon, M. (2004). 7 - Factors affecting lipid oxidation. In R. Steele (Ed.), Understanding and Measuring the Shelf-Life of Food (pp. 128-141). Woodhead Publishing. https://doi.org/10.1533/9781855739024.1.128.

  • Ha, S. W., Weitzmann, M. N., & Beck Jr, G. R (2013). Chapter 4 - Dental and skeletal applications of silica-based nanomaterials. In K. Subramani, W. Ahmed, & J. K. Hartsfield (Eds.), Nanobiomaterials in Clinical Dentistry (pp. 69-91). William Andrew Publishing. https://doi.org/10.1016/B978-1-4557-3127-5.00004-0

  • Handajani, U., Harsini, M., & Wicaksono, Z. (2014). Determine of copper metal in cooking oil by saponification method with atomic absorption spectrophotometer (AAS). Malaysian Journal of Fundamental and Applied Sciences, 10(4), 179-183. https://doi.org/10.11113/mjfas.v10n4.270

  • Hernandez, E. M. (2016). 4 - Specialty oils: Functional and nutraceutical properties. In T. A. B. Sanders (Ed.), Function Dietary Lipids (pp. 69-101). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-247-1.00004-1.

  • Israelachvili, J. N. (2011). Intermolecular and Surface Forces. Academic press. https://doi.org/10.1016/C2009-0-21560-1

  • Jaarin, K., & Kamisah, Y. (2012). Repeatedly heated vegetable oils and lipid peroxidation. In A. Catala (Ed.), Lipid Peroxidation (pp. 211-228). InTech Open. http://dx.doi.org/10.5772/46076

  • Japar, N. S. A., Aziz, M. A. A., & Razali, M. N. (2020). Fundamental Study of Waste Oil Potential as Base Oil Alternative in Grease Formulation. Core. https://core.ac.uk/download/pdf/186358742.pdf

  • Johnson, O. A., & Affam, A. C. (2019). Petroleum sludge treatment and disposal: A review. Enviroment Engineering Research, 24(2), 191-201. https://doi.org/10.4491/eer.2018.134

  • Jong, H. N. (2021). Palm Oil Waste is Latest Item Declared Non-Hazardous by Indonesia. Mongabay. https://news.mongabay.com/2021/04/palm-oil-waste-spent-bleaching-earth-non-hazardous-indonesia/

  • Kamaruzaman, W. N., & Zin, N. S. M. (2019, June). Recycle of used cooking oil. [Paper presentation]. Conference: International Professional Learning Communities in Education 2019. Kuala Lumpur, Malaysia.

  • Khalid, R. S., Helaluddin, A., Alaama, M., Abdualkader, M. A., Kasmuri, A., & Abbas, S. A. (2016). Reliability of graphite furnace atomic absorption spectrometry as alternative method for trace analysis of arsenic in natural medicinal products. Tropical Journal of Pharmaceutical Research September, 15(9), 1967-1972. http://dx.doi.org/10.4314/tjpr.v15i9.22

  • Libert, M. A. (1987). Final report on the safety assessment of oleic acid, lauric acid, palmitic acid, myristic acid, and stearic acid. International Journal of Toxicology, 6(3), 321-401. https://doi.org/10.3109/10915818709098563

  • Livent. (2018). Handling Guide for Lithium Hydroxid. Livent. https://livent.com/wp-content/uploads/2018/10/Lithium-Hydroxide-Safe-Handling-Guide-v10.09.18.pdf

  • Lopes, M., Miranda, S. M., & Belo, I. (2020). Microbial valorization of waste cooking oils for valuable compounds production - A review. Critical Reviews in Environmental Science and Technology, 50(24), 2583-2616. https://doi.org/10.1080/10643389.2019.1704602

  • Manarattanasuwan, S. (2011). Toxic Trace Metals in Edible Oils by Graphite Furnace Atomic Absorption Spectrophotometry. Semantic Scholar. https://www.semanticscholar.org/paper/Toxic-Trace-Metals-in-Edible-Oils-by-Graphite/df2b51857be016623333351b98187a146c538a7c

  • Mannu, A., Garroni, S., Porras, J. I., & Mele, A. (2020). Available technologies and materials for waste. Processes, 8(3), Article 366. https://doi.org/10.3390/pr8030366

  • Mohammed, M. A. (2013). Effect of additives on the properties of different types of greases. Iraqi Journal of Chemical and Petroleum Engineering, 14(3), 11-21.

  • New Jersey Department of Health and Senior Services. (2014). Lithium hydroxide monohydrate. Hazardous Substance Fact Sheet. https://nj.gov/health/eoh/rtkweb/documents/fs/1128.pdf

  • Nizam, N. A., & Misdan, N. (2022). Review of the production of biodiesel from waste cooking oil using acid/alkaline based catalysts. Progress in Engineering Application and Technology, 3(1), 954-966. https://doi.org/10.30880/peat.2022.03.01.093

  • Noor, N. A. M., & Hua, A. K. (2016). Cooking oil management in cafeteria operator: A review. International Research Journal of Humanities & Social Science, 1(4), 29-39.

  • Othman, N. (2009). Production of grease from waste cooking oil [Bachelor dissertation]. Universiti Malaysia Pahang, Malaysia. https://www.semanticscholar.org/paper/PRODUCTION-OF-GREASE-FROM-WASTE-COOKING-OIL-BINTI-A-Othman/95a5a7edad68692a510a8918afc61369a47e3993

  • Panadare, D. C., & Rathod, V. K. (2015). Application of waste cooking oil than biodiesel: A review. Iranian Journal of Chemical Engineering, 12(3), 55-76.

  • Piotrowska-Cyplik, A., Chrzanowski, L., Cyplik, P., Dach, J., Olejnik, A., Staninska, J., Czarny, J., Lewicki, A., Marecik, R., & Powierska-Czarny, J. (2013). Composting of oiled bleaching earth: Fatty acids degradation, phytotoxicity and mutagenicity changes. International Biodeterioration & Biodegradation, 78, 49-57. https://doi.org/10.1016/j.ibiod.2012.12.007.

  • Raghavan, S., Hou, J., Baker, G., & Khan, S. (2000). Colloidal interactions between particles with tethered nonpolar chains dispersed in polar media: Direct correlation between dynamic rheology and interaction parameters. Langmuir, 16(3), 1066-1077. https://doi.org/10.1021/la9815953

  • Rahman, M. R., Hui, J. L. C., & Hamdan, S. (2018). 5 - Nanoclay dispersed phenol formaldehyde/fumed silica nanocomposites: Effect of diverse clays on physicomechanical and thermal properties. In M. R. Rahman (Ed.), Silica and Clay Dispersed Polymer Nanocomposites (Preparation, Properties and Applications) (pp. 59-70). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102129-3.00005-1.

  • Rahman, W., Aziz, M. A. A., Hamid, N., & Japar, N. S. A. (2020). Thermal stability study of grease formulated from industrial waste oil. Platform: A Journal of Engineering, 4(1), 20-28.

  • Rajvanshi, A., & Pandey, P. K. (2016). Lubricating grease from waste cooking oil and waste motor sludge. International Jurnal of Chemical and Molecular Engineering, 10(9), 1220-1223. https://doi.org/10.5281/zenodo.1126898

  • Rav, A. P., Sivasankar, S., Razali, N. K., Karmegam, K., Velu, P., Kulanthayan, S., & Naeini, H. S. (2020). A review of occupational safety and health problems among quarry plant workers. Malaysian Journal of Medicine and Health Sciences, 16(11), 194-200.

  • Razali, M. N., Aziz, M. A. A., Hamdan, W. N. A. W. M., Salehan, N. A. M., & Rosli, M. Y. (2017). Synthesis of grease from waste oils and red gypsum. Australian Journal of Basic and Applied Sciences, 11(113), 154-159.

  • Rinaldi, L., Wu, Z., Giovando, S., Bracco, M., Crudo, D., Bosco, V., & Cravotto, G. (2017). Oxidative polymerization of waste cooking oil with air under hydrodynamic cavitation. Journal Green Processing and Synthesis, 6(4), 425-432. https://doi.org/10.1515/gps-2016-0142

  • Rokiah, O., Khairunisa, M., Youventharan, D., & Arif, S. M. (2019). Effect of processed spent bleaching earth content on the compressive strength of foamed concrete. IOP Conference Series: Earth and Environmental Science, 244(1), Article 012013. https://doi.org/10.1088/1755-1315/244/1/012013

  • Sani, G., & Florillo, A. (2020). The use of lithium in mixed states. CNS Spectrums, 25(4), 449-451. https://doi.org/10.1017/S1092852919001184

  • Savan, A., Pflüger, E., Voumard, P., Schröer, A., & Simmonds, M. (2006). Modern solid lubrication: Recent developments and applications of MoS2. Lubricant Science, 12(2), 185-203. https://doi.org/10.1002/ls.3010120206

  • Sharma, U. C., & Singh, N. (2019). Biogrease for enviroment friendly lubrication. In B. R. Gurjar & S. Y. Rao (Eds.), Environmental Science and Engineering Vol. 1 Sustainable Development (pp. 305-317). Studium Press.

  • Singh-Ackbarali, D., Maharaj, R., Mohamed, N., & Ramjattan-Harry, V. (2017). Potential of used frying oil in paving material: Solution to environmental pollution problem. Environmental Science and Pollution Research, 24, 12220-12226. https://doi.org/10.1007/s11356-017-8793-z

  • Sinitsyn, V. V., & Viktorova, Y. S. (1968). Graphite and molybdenum disulfide in plastic greases. Chemistry and Technology of Fuels and Oils, 4(8), 585-588. https://doi.org/10.1007/BF00717718

  • Smallwood, N. J. (2020). Use of spent bleaching earth from edible oil processing in the formulation salt (U.S. Patent No. 10,624,367). U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/48/75/77/682b1b67dce123/US10624367.pdf

  • Smith, W. N., McCloskey, J., & Atterbury, A. (2000). Pouched ingredients for preparing greases (U.S. Patent No. 6,153,563). U.S. Patent and Trademark Office. https://patents.google.com/patent/US6153563A/en?oq=US6153563A

  • Srinivas, V., Thakur, R. N. & Jain, A. K. (2017). Anti-wear, anti-friction and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulphide nano-particles. Tribology Transactions, 60(1), 12-19. https://doi.org/10.1080/10402004.2016.1142034.

  • Sugino, Y., & Kawaguchi, M. (2017). Fumed and precipitated hydrophilic silica suspension gels in mineral oil: Stability and rheological properties. Gels, 3(3), Article 32. https://doi.org/10.3390/gels3030032

  • Sun, B., Wang, X., Liao, Y. P., Ji, Z., Chang, C. H., Pokhrel, S., Ku, J., Liu, X., Wang, M., Dunphy, D. R., Li, R., Meng, H., Madler, L., Brinker, C. J., Nel, A. E., & Xia, T. (2016). Repetitive dosing of fumed silica leads to profibrogenic effects through unique structure-activity relationships and biopersistence in the lung. ACS Nano, 10(8), 8054-8066. https://doi.org/10.1021/acsnano.6b04143

  • Susskind, L., Chun, J., Goldberg, S., Gordon, J., Smith, G., & Zaerpoor, Y. (2020). Breaking out of carbon lock-in: Malaysia’s path to decarbonization. Frontiers in Built Environment, 6, Article 21. https://doi.org/10.3389/fbuil.2020.00021.

  • Suzihaque, M., Alwi, H., Ibrahim, U. K., Abdullah, S., & Haron, N. (2022). Biodiesel production from waste cooking oil: A brief review. Materials Today: Proceedings, 63(1), S490-S495. https://doi.org/10.1016/j.matpr.2022.04.527

  • Szelong, K., & Fan, K. (2020). Chemistry of lithium (Z=3). Libretexts Chemistry. https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites_(Inorganic_Chemistry)/Descriptive_Chemistry/Elements_Organized_by_Block/1_s-Block_Elements/Group__1%3A_The_Alkali_Metals/Z003_Chemistry_of_Lithium_(Z3)

  • Tan, K. T., Lee, K. T., & Mohamed, A. R. (2011). Potential of waste palm cooking oil for catalyst-free biodiesel production. Energy, 36(4), 2085-2088. https://doi.org/10.1016/j.energy.2010.05.003

  • Vansant, E. F., Van Der Voort, P., & Vrancken, K. C. (1995). Characterization and Chemical Modification of the Silica Surface. Elsevier.

  • Vitz, E., Moore, J. W., Shorb, J., Prat-Resina, X., Wendorff, T., & Hahn, A. (2021). Foods- vegetable oil hydrogenation, trans fats, and percent yield. Chemistry LibreTexts. https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/03%3A_Using_Chemical_Equations_in_Calculations/3.04%3A_Percent_Yield/3.4.02%3A_Foods-_Vegetable_Oil_Hydrogenation_Trans_Fats_and_Percent_Yield

  • Vollaard, B. (2017). Temporal displacement of environmental crime: Evidence from marine oil pollution. Journal of Environmental Economics and Management, 82, 168-180. https://doi.org/10.1016/j.jeem.2016.11.001

  • Whitby, C. P. (2020). Structuring edible oils with fumed silica particles. Frontiers in Sustainable Food Systems 4, Article 585160. https://doi.org/10.3389/fsufs.2020.585160

  • Yang, B., Kim, S., Choi, C. H., Jeoung, H. W., & Kim, H. (2017). Effects of scutellaria baicalensis extract on skin lesion of contact dermatitis induced by DNFB in mice. Journal of Physiology & Pathology in Korean Medicine, 31(1), 59-64. https://doi.org/10.15188/kjopp.2017.

  • Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B. Filipic, M., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G. G. Leblanc, J. C., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, U. Woutersen, R. A … Lambre, C. (2018). Re-evaluation of silicon dioxide (E 551) as a food additive. European Food Safety Authority Journal, 16(1), Article e05088. https://doi.org/10.2903/j.efsa.2018.5088

  • Zebox, A., Abutolib, S., & Vaxobjon, M. (2022). Ways to improve the lubricating properties of greases. Texas Journal of Engineering and Technology, 7, 1-4.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Related Articles