Home / Regular Issue / JST Vol. 46 (2) May. 2023 / JTAS-2628-2022

 

Phytase Enzyme Improves Growth Performance and Body Chemical Composition of Sangkuriang Catfish (Clarias gariepinus var. Sangkuriang) Juvenile

Diana Rachmawati, Putut Har Riyadi, Istiyanto Samidjan, Tita Elfitasari, Diana Chilamawati, Seto Windarto, Rosa Amalia, Dewi Nurhayati, Tristiana Yuniarti and Yunanto

Pertanika Journal of Science & Technology, Volume 46, Issue 2, May 2023

DOI: https://doi.org/10.47836/pjtas.46.2.20

Keywords: Mineral, phytase enzyme, phytic acid, protein, Sangkuriang catfist

Published on: 16 May 2023

Due to their nutritional value, alternative vegetable materials such as soybean are needed to promote sustainable aquaculture development. However, phytate in soybean could interfere with the protein digestion of the fish body. This study examines the effectiveness of phytate enzymes in enhancing protein digestibility, growth performance, mineral digestion, and body chemical composition of Sangkuriang catfish (Clarias gariepinus var. Sangkuriang) juveniles. The study was completely randomized design with 4 treatments and 3 repetitions. One hundred thirteen Sangkuriang catfish juveniles (7.65 ± 0.14 g) were used for each repetition. The fish were fed with an experimental diet supplemented with various doses of phytase enzyme: 0 (A), 500 (B), 1,000 (C), and 1,500 (D) FTU/kg of feed. The mineral digestibility, protein digestibility, protein efficiency ratio (PER), feed conversion ratio (FCR), the efficiency of feed utilization (EFU), apparent digestibility coefficients (ADCp), relative growth rate (RGR), and survival rate (SR) were observed. Data were analyzed using analysis of variance followed by Duncan’s multiple range test. The results showed that adding 1,000 FTU/kg of phytase enzyme (C) exhibited the highest PER, FCR, EFU, ADCp, and RGR value of Sangkuriang catfish juveniles compared to other treatments. All treatment groups (B-C) had the same SR value (100%) and had the highest crude protein and ash content compared to the A group. All group treatments also exhibited a higher phosphorus, calcium, potassium, magnesium, iron, zinc, manganese, copper, and cobalt. Therefore, phytase enzyme supplementation could improve protein digestibility, mineral digestibility, growth performance, and body chemical composition of Sangkuriang catfish juveniles.

  • Akiyama, D. M., & Dominy, W. G. (1989). Penaeid shrimp nutrition for the commercial feed industry. American Soybean Association.

  • Association of Official Analytical Chemists. (2019). Official methods of analysis (21st ed.). Association of Official Analytical Chemists Inc.

  • Baruah, K., Pal, A. K., Sahu, N. P., Debnath, D., Nourozitallab, P., & Sorgeloos, P. (2007). Microbial phytase supplementation in rohu, Labeo rohita, diets enhances growth performance and nutrient digestibility. Journal of the World Aquaculture Society, 38(1), 129-137. https://doi.org/10.1111/j.1749-7345.2006.00081.x

  • Biswas, A., Araki, H., Sakata, T., Nakamori, T., & Takii, K. (2019). Optimum fish meal replacement by soy protein concentrate from soymilk and phytase supplementation in diets of red sea bream, Pagrus major. Aquaculture, 506, 51-59. https://doi.org/10.1016/j.aquaculture.2019.03.023

  • Bulbul, M., Kader, Md. A., Ambak, M. A., Hossain, Md. S., Ishikawa, M., & Koshio, S. (2015). Effects of crystalline amino acids, phytase and fish soluble supplements in improving nutritive values of high plant protein based diets for kuruma shrimp, Marsupenaeus japonicus. Aquaculture, 438, 98-104. https://doi.org/10.1016/j.aquaculture.2015.01.007

  • Cao, L., Wang, W., Yang, C., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., & Li, D. (2007). Application of microbial phytase in fish feed. Enzyme and Microbial Technology, 14(4), 497-507. https://doi.org/10.1016/j.enzmictec.2007.01.007

  • Cheng, Z. J., & Hardy, R. W. (2003). Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture, 218(1-4), 501–514. https://doi.org/10.1016/S0044-8486(02)00458-1

  • Cian, R. E., Bacchetta, C., Rossi, A., Cazenave, J., & Drago, S. R. (2019). Red seaweed Pyropia columbina as antioxidant supplement in feed for cultured juvenile Pacú (Piaractus mesopotamicus). Journal of Applied Phycology, 31, 1455-1465. https://doi.org/10.1007/s10811-018-1648-2

  • Debnath, D., Pal, A. K., Narottam, P. S., Jain, K. K., Yengkokpam, S., & Mukherjee, S. C. (2005). Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius (Hamilton) fingerlings. Aquaculture Research, 36(2), 180–187. https://doi.org/10.1111/j.1365-2109.2004.01203.x

  • Haghbayan, S., & Mehrgan, M. S. (2015). The effect of replacing fish meal in the diet with enzyme-treated soybean meal (HP310) on growth and body composition of rainbow trout fry. Molecules, 20(12), 21058–21066. https://doi.org/10.3390%2Fmolecules201219751

  • Hussain, S. M., Afzal, M. A., Nasir, S., Javid, A., Azmat, H., Makhdoom, S. M., Shah, S. Z., H., Hussain, M., Mustafa, I., & Iqbal, M. (2017). Role of phytase supplementation in improving nutrient digestibility and growth performance for Labeo rohita fingerlings fed on canola meal-based diet. Journal of Applied Animal Research, 45(1), 15–21. https://doi.org/10.1080/09712119.2015.1091331

  • Hussain, S. M., Ahmad, N., Shahzad, M. M., Javid, A., Aslam, N., Hussain, M., Arsalan, M. Z. H., & Riaz, D. (2020). Efficacy of phytase enzyme and citric acid on growth performance, nutrients and mineral digestibility of Cirrhinus mrigala fingerlings fed guar meal-based diet. Iranian Journal of Fisheries Sciences, 19(3), 1573-1588. https://doi.org/10.22092/ijfs.2018.117462

  • Jayant, M., Muralidhar, A., Sahu, N. P., Jain, K. K., Pall, A. K., & Srivastava, P. P. (2018). Protein requirement of juvenile striped catfish, Pangasianodon hypophthalmus. Aquaculture International, 26(1), 375-389. https://doi.org/10.1007/s10499-017-0216-0

  • Laining, A., Ishikawa, M., Koshio, S., & Yokoyama, S. (2012). Dietary inorganic phosphorus or microbial phytase supplementation improves growth, nutrient utilization and phosphorus mineralization of juvenile red sea bream, Pagrus major, fed soybean‐based diets. Aquaculture Nutrition, 18(5), 502-511. https://doi.org/10.1111/j.1365-2095.2011.00914.x

  • Liebert, F., & Portz, L. (2005). Nutrient utilization of Nile tilapia Oreochromis niloticus fed plant based low phosphorus diets supplemented with graded levels of different sources of microbial phytase. Aquaculture, 248(1-4), 111–119. https://doi.org/10.1016/j.aquaculture.2005.04.009

  • National Research Council. (2011). Nutrient requirements of fish and shrimp. National Academies Press.

  • Nie, X. Z., Chen, S., Zhang, X. X., Dai, B. Y., & Qian, L. C. (2017). Effects of neutral phytase on growth performance and phosphorus utilization in crucian carp (Carassius auratus). Journal of Zhejiang University-Science B, 18, 886–896. https://doi.org/10.1631/jzus.B1600280

  • Papatryphon, E., Howell, R. A., & Soares Jr., J. H. (1999). Growth and mineral absorption by striped bass Morone saxatilis fed a plant feed stuff based diet supplemented with phytase. Journal of World Aquaculture Society, 30(2), 161–73. https://doi.org/10.1111/j.1749-7345.1999.tb00863.x

  • Pérez-Jiménez, A., Cardenete, G., Morales, A. E., García- Alcázar, A., Abellán, E., & Hidalgo, M. C. (2009). Digestive enzymatic profile of Dentex dentex and response to different dietary formulations. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 154(1), 157-164. https://doi.org/10.1016/j.cbpa.2009.05.126

  • Rachmawati, D., Samidjan, I., & Mel, M. (2017). Effect of phytase on growth performance, diet utilization efficiency and nutrient digestibility in fingerlings of Chanos chanos (Forsskal 1775). Philippine Journal of Science, 146(3), 237-245.

  • Rachmawati, D., Sarjito, S., Samidjan, I., Nurhayati, D., & Riyadi, P. H. (2022). Effects of yeast on the growth performance of Sangkuriang catfish fingerlings (Clarias gariepinus var. Sangkuriang). Pertanika Journal of Tropical Agricultural Science, 45(1), 273–284. https://doi.org/10.47836/pjtas.45.1.16

  • Ravindran, V., Bryden, W. L., & Kornegay, E. T. (1995). Phytates: Occurrence, bioavailability, and implications in poultry nutrition. Poultry and Avian Biology Reviews, 6(2), 125-143.

  • Sajjadi, M., & Carter, C. G. (2004). Dietary phytase supplementation and the utilization of phosphorus by Atlantic salmon (Salmo salar L.) fed a canola-meal-based diet. Aquaculture, 240(1-4), 417-431. https://doi.org/10.1016/j.aquaculture.2004.07.003

  • Salem, S., Sallam, A. E., El-feky, M., & Elsayed, H. A. G. (2022). Effect of phytase supplementation on growth performance, body mineral composition, and effluent phosphorus content of the seabream (Sparus aurata). Egyptian Journal of Aquatic Biology and Fisheries, 26(3), 149–166. https://doi.org/10.21608/EJABF.2022.238891

  • Shahzad, M. M., Bashir, S., Hussain, S. M., Javid, A., Hussain, M., Ahmed, N., Khan, M. K. A., Furqan, M., Liaqat, I., Rafique, T., & Khalid, F. (2021). Effectiveness of phytase pre-treatment on growth performance, nutrient digestibility and mineral status of common carp (Cyprinus carpio) juveniles fed Moringa by-product based diet. Saudi Journal of Biological Sciences, 28(3), 1944–1953. https://doi.org/10.1016/j.sjbs.2020.12.046

  • Shahzad, M. M., Liquat, I., Hussain, S. M., Hussain, M., Hussain, Z., Chaudhary, A., Abdullah, S., Shah, S. Z. H., Khan, M. K. A., Bashir, S., & Rafique, M. T. (2022). Effects of dietary phytase (PHY) levels on nutrient digestibility, mineral absorption and growth performance of Oreochromis niloticus fingerlings fed Moringa based diets. Pakistan Journal Agriculture Science, 59(2), 269-278. https://doi.org/10.21162/PAKJAS/22.256

  • Shapawi, R., Ebi, I., & Yong, A. (2013). Soybean meal as a source of protein in formulated diets for tiger grouper, Epinephelus fuscoguttatus juvenile. Part I: Effects on growth, survival, feed utilization and body compositions. Agricultural Sciences, 4(7), 317–323. https://doi.org/10.4236/as.2013.47045

  • Spinelli, J., Houle, C. R., & Wekell, C. (1983). The effect of phytates of the growth of rainbow trout (Salmo gairdneri) fed purified diets containing various quantities of calcium and magnesium. Aquaculture, 30(1-4), 71-83. https://doi.org/10.1016/0044-8486(83)90153-9

  • Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed.). McGraw Hill, Inc.

  • Sugiura, S. H., Gabaudan, J., Dong, F. M., & Hardy, R. W. (2001). Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout [Oncorhynchus mykiss (Walbaum)] fed soybean meal-based diets. Aquaculture Research, 3(7), 583–592. https://doi.org/10.1046/j.1365-2109.2001.00581.x

  • Tacon, A. G. J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015

  • Vielma, J., Mäkinen, T., Ekholm, P., & Koskela, J. (2000). Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout (Oncorhynchus mykiss) and algal availability of phosphorus load. Aquaculture, 183(3-4), 349-362. https://doi.org/10.1016/S0044-8486(99)00299-9

  • von Danwitz, A., van Bussel, C. G. J., Klatt, S. F., & Schulz, C. (2016). Dietary phytase supplementation in rapeseed protein based diets influences growth performance, digestibility and nutrient utilization in turbot (Psetta maxima). Aquaculture, 450, 405–411. https://doi.org/10.1016/j.aquaculture.2015.07.026

  • Wang, F., Yang, Y. H., Han, Z. Z., Dong, H. W., Yang, C. H., & Zou, Z. Y. (2009). Effect of phytase pretreatment of soybean meal and phytase-sprayed in diets on growth, apparent digestibility coefficient and nutrient excretion of rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture International, 17, 143–157. https://doi.org/10.1007/s10499-008-9187-5

  • Widi, S. (2022). Produksi lele di Indonesia sebanyak 1.06 juta ton pada 2021 [Catfish production in Indonesia reached 1.06 million tonnes in 2021]. https://dataindonesia.id/sektor-riil/detail/produksi-lele-di-indonesia-sebanyak-106-juta-ton-pada-2021

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JTAS-2628-2022

Download Full Article PDF

Share this article

Related Articles