e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
American Society for Testing and Materials. (1997). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete C642-97. ASTM International, March, 1–3. https://doi.org/10.1016/j.asej.2012.04.011
American Society of Testing Materials c-979-99. (2015). Standard Specification for Pigments for Integrally Colored Concrete 1. Astm, 14(c), 3–7. https://doi.org/10.1520/C0979_C0979M-16
Arpitha, D. J., & Praveen, K. (2022). Experimental investigation of aluminium dross and GGBS in the production of eco-friendly concrete. In IOP Conference Series: Materials Science and Engineering (Vol. 1255, No. 1, p. 012003). IOP Publishing. https://doi.org/10.1088/1757-899x/1255/1/012003
Bakhtyar, B., Kacemi, T., & Nawaz, M. A. (2017). A review on carbon emissions in Malaysian cement industry. International Journal of Energy Economics and Policy, 7(3), 282-286.
BS EN 196-1. (2005). Standard Cement - British Standard Methods of Testing Cement. https://doi.org/10.3403/30291447U
BS EN 12350-2. (2009). Testing fresh concrete - Part 2: Slump Test - BSI Standards Publication, (January). https://doi.org/10.3403/30164882
BS EN 12390-3. (2001). Testing hardened concrete - Part 3: Compressive strength of test specimens. In BSI Standards Publication (pp. 4–10). https://doi.org/10.3403/30360097
BS EN 12390-5. (2019). Testing hardened concrete - Part 5: Flexural strength of test specimens. BSI Standards Publication, August, 1–22. https://doi.org/10.3403/30360073U
BS EN 12620. (2002). Aggregates for concrete. BSI Standards Publication, (August). https://doi.org/10.3403/30192952
Dirisu, J. O., Oyedepo, S. O., Fayomi, O. S. I., & Akinlabi, E. T. (2021). Development of silicate aluminium dross composites for sustainable building ceilings. Silicon, 13(6), 1979-1991. https://doi.org/10.1007/s12633-020-00586-z
Eckbo, C., Okkenhaug, G., & Hale, S. E. (2022). The effects of soil organic matter on leaching of hexavalent chromium from concrete waste: Batch and column experiments. Journal of Environmental Management, 309, Article 114708. https://doi.org/10.1016/j.jenvman.2022.114708
Elseknidy, M. H., Salmiaton, A., Shafizah, I. N., & Saad, A. H. (2020). A study on mechanical properties of concrete incorporating aluminum dross, fly ash, and quarry dust. Sustainability, 12(21), 1-13. https://doi.org/10.3390/su12219230
El-Aziz, M. A. A., & Sufe, W. H. (2013). Effect of sewage wastes on the physico-mechanical properties of cement and reinforced steel. Ain Shams Engineering Journal, 4(3), 387-391. https://doi.org/10.1016/j.asej.2012.04.011
Estokova, A., Palascakova, L., & Kanuchova, M. (2018). Study on Cr(VI) leaching from cement and cement composites. International Journal of Environmental Research and Public Health, 15(4), 1-13. https://doi.org/10.3390/ijerph15040824
Galat, N. Y., Dhawale, G. D., & Kitey, M. S. (2017). Performance of concrete using aluminium dross. Journal of Emerging Technologies and Innovative Research, 4(07), 5-10.
Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194-216. https://doi.org/10.1016/j.ijsbe.2013.05.001
Javali, S., Chandrashekar, A. R., Naganna, S. R., Manu, D. S., Hiremath, P., Preethi, H. G., & Kumar, N. V. (2017). Eco-concrete for sustainability: Utilizing aluminium dross and iron slag as partial replacement materials. Clean Technologies and Environmental Policy, 19(9), 2291-2304. https://doi.org/10.1007/s10098-017-1419-9
Khan, M. A. (2015). Prefabrication of the substructure and construction issues. In Accelerated Bridge Construction (pp. 399-441). Elsevier Inc. https://doi.org/10.1016/b978-0-12-407224-4.00009-5
Kandhan, K. U. M., & Karunakaran, V. (2021). Behaviour of concrete by partial replacement of lime in cement. International Research Journal of Engineering and Technology, 8(3), 2730- 2735.
Kudyba, A., Akhtar, S., Johansen, I., & Safarian, J. (2021). Aluminum recovery from white aluminum dross by a mechanically activated phase separation and remelting process. The Journal of The Minerals, Metals & Materials Society, 73(9), 2625-2634. https://doi.org/10.1007/s11837-021-04730-x
Mahinroosta, M., & Allahverdi, A. (2018). Hazardous aluminum dross characterization and recycling strategies: A critical review. Journal of Environmental Management, 223, 452-468. https://doi.org/10.1016/j.jenvman.2018.06.068
Mailar, G., Sreedhara, B. M., Manu, D. S., Hiremath, P., & Jayakesh, K. (2016). Investigation of concrete produced using recycled aluminium dross for hot weather concreting conditions. Resource-Efficient Technologies, 2(2), 68-80. https://doi.org/10.1016/j.reffit.2016.06.006
Meddah, M. S., Praveenkumar, T. R., Vijayalakshmi, M. M., Manigandan, S., & Arunachalam, R. (2020). Mechanical and microstructural characterization of rice husk ash and Al2O3 nanoparticles modified cement concrete. Construction and Building Materials, 255, Article 119358. https://doi.org/10.1016/j.conbuildmat.2020.119358
Meshram, A., & Singh, K. K. (2018). Recovery of valuable products from hazardous aluminum dross: A review. Resources, Conservation and Recycling, 130, 95-108. https://doi.org/10.1016/j.resconrec.2017.11.026
Naqi, A., & Jang, J. G. (2019). Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability, 11(2), Article 537. https://doi.org/10.3390/su11020537
Nirmale, G. B., & Bhusare, V. P. (2018). Review on studies of partially replacement concrete using aluminium dross. Journal of Advances and Scholarly Researches in Allied Education, 15(2), 345-348. https://doi.org/10.29070/15/56844
Odeyemi, S. O., Abdulwahab, R., Anifowose, M. A., & Atoyebi, O. D. (2021). Effect of curing methods on the compressive strengths of palm kernel shell concrete. Civil Engineering and Architecture, 9(7), 2286-2291. https://doi.org/10.13189/cea.2021.090716
Panditharadhya, B. J., Sampath, V., Mulangi, R. H., & Shankar, A. U. R. (2018). Mechanical properties of pavement quality concrete with secondary aluminium dross as partial replacement for ordinary portland cement. In IOP conference series: materials science and engineering (Vol. 431, No. 3, p. 032011). IOP Publishing. https://doi.org/10.1088/1757-899X/431/3/032011
Pattinaja, A. M. J., & Tjahjani, A. R. I. (2015). Nano silica and silica fume for durability improvement and it ’ s impact on high performance concrete. In 2nd International Conference on Green Materials and Environmental Engineering (pp. 115-117). Atlantis Press. https://doi.org/10.2991/gmee-15.2015.31
Reddy, M. S., & Neeraja, D. (2016). Mechanical and durability aspects of concrete incorporating secondary aluminium slag. Resource-Efficient Technologies, 2(4), 225-232. https://doi.org/10.1016/j.reffit.2016.10.012
Reddy, P. N., & Naqash, J. A. (2019a). Experimental study on TGA, XRD and SEM analysis of concrete with ultra-fine slag. International Journal of Engineering, Transactions B: Applications, 32(5), 679-684. https://doi.org/10.5829/ije.2019.32.05b.09
Reddy, P. N., & Naqash, J. A. (2019b). Properties of concrete modified with ultra-fine slag. Karbala International Journal of Modern Science, 5(3), 151-157. https://doi.org/10.33640/2405-609X.1141
Soós, Z., Géber, R., Tóth, C., Igazvölgyi, Z., & Udvardi, B. (2017). Utilization of aluminium dross as asphalt filler. Epitoanyag - Journal of Silicate Based and Composite Materials, 69(3), 89-93. https://doi.org/10.14382/epitoanyag-jsbcm.2017.15
Sultana, U. K., Gulshan, F., Gafur, M. A., & Kurny, A. S. W. (2013). Kinetics of recovery of alumina from aluminium casting waste through fusion with sodium hydroxide. American Journal of Material Engineering and Technology, 1(3), 30-34. https://doi.org/10.12691/materials-1-3-1
Sumra, Y., Payam, S., & Zainah, I. (2020). The pH of cement-based materials: A review. Journal Wuhan University of Technology, Materials Science Edition, 35(5), 908-924. https://doi.org/10.1007/s11595-020-2337-y
Udvardi, B., Géber, R., & Kocserha, I. (2019). Examination of the utilization of aluminum dross in road construction. In IOP Conference Series: Materials Science and Engineering (Vol. 613, No. 1, p. 012053). IOP Publishing. https://doi.org/10.1088/1757-899X/613/1/012053
Ukrainczyk, N., Ukrainczyk, M., Sipusic, J., & Matusinovic, T. (2006, June 22-24). XRD and TGA investigation of hardened cement paste. In Proceedings of the Conference on Materials, Processes, Friction and Wear (pp. 243-249). Vela Luka, Croatia.
Vedalakshmi, R., Raj, A. S., Srinivasan, S., & Babu, K. G. (2003). Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique. Thermochimica Acta, 407(1-2), 49-60. https://doi.org/10.1016/S0040-6031(03)00286-7
Vogler, N., Drabetzki, P., Lindemann, M., & Kühne, H. C. (2022). Description of the concrete carbonation process with adjusted depth-resolved thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 147(11), 6167-6180. https://doi.org/10.1007/s10973-021-10966-1
Walker, R., & Pavía, S. (2011). Physical properties and reactivity of pozzolans, and their influence on the properties of lime-pozzolan pastes. Materials and Structures/Materiaux et Constructions, 44(6), 1139-1150. https://doi.org/10.1617/s11527-010-9689-2
Zauzi, N. S. A., Zakaria, M. Z. H., Baini, R., Rahman, M. R., Sutan, N. M., & Hamdan, S. (2016). Influence of alkali treatment on the surface area of aluminium dross. Advances in Materials Science and Engineering, 2016, Article 6306304. https://doi.org/10.1155/2016/6306304
Zhou, J., Zheng, K., Liu, Z., & He, F. (2019). Chemical effect of nano-alumina on early-age hydration of Portland cement. Cement and Concrete Research, 116, 159-167. https://doi.org/10.1016/j.cemconres.2018.11.007
ISSN 1511-3701
e-ISSN 2231-8542