Home / Regular Issue / JST Vol. 29 (2) Apr. 2021 / JST-2149-2020

 

Penalized LAD-SCAD Estimator Based on Robust Wrapped Correlation Screening Method for High Dimensional Models

Ishaq Abdullahi Baba, Habshah Midi, Leong Wah June and Gafurjan Ibragimove

Pertanika Journal of Science & Technology, Volume 29, Issue 2, April 2021

DOI: https://doi.org/10.47836/pjst.29.2.19

Keywords: LAD-SCAD estimators, robust screening, ultrahigh dimensional data, variable selection

Published on: 30 April 2021

The widely used least absolute deviation (LAD) estimator with the smoothly clipped absolute deviation (SCAD) penalty function (abbreviated as LAD-SCAD) is known to produce corrupt estimates in the presence of outlying observations. The problem becomes more complicated when the number of predictors diverges. To overcome these problems, the LAD-SCAD based on sure independence screening (SIS) technique is put forward. The SIS method uses the rank correlation screening (RCS) algorithm in the pre-screening step and the traditional Pathwise coordinate descent algorithm for computing the sequence of the regularization parameters in the post screening step for onward model selection. It is now evident that the rank correlation is less robust against outliers. Motivated by these inadequacies, we propose to improvise the LAD-SCAD estimator using robust wrapped correlation screening (WCS) method by replacing the rank correlation in the SIS method with robust wrapped correlation. The proposed estimator is denoted as WCS+LAD-SCAD and will be employed for variable selection. The simulation study and real-life data examples show that the proposed procedure produces more efficient results compared to the existing methods.

  • Ahmed, T., & Bajwa, W. U. (2019). ExSIS: Extended sure independence screening for ultrahigh-dimensional linear models. Signal Processing, 159, 33-48. https://doi.org/10.1016/j.sigpro.2019.01.018

  • Arslan, O. (2012). Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression. Computational Statistics & Data Analysis, 56(6), 1952-1965. https://doi.org/10.1016/j.csda.2011.11.022

  • Bai, Z. D., & Wu, Y. (1997). General M-estimation. Journal of Multivariate Analysis, 63(1), 119-135. https://doi.org/10.1006/jmva.1997.1694

  • Brown, P. J., Fearn, T., & Vannucci, M. (2001). Bayesian wavelet regression on curves with application to a spectroscopic calibration problem. Journal of the American Statistical Association, 96(454), 398-408. https://doi.org/10.1198/016214501753168118

  • Candes, E., & Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. The annals of Statistics, 35(6), 2313-2351. https://doi.org/10.1214/009053606000001523

  • Chang, L., Roberts, S., & Welsh, A. (2018). Robust Lasso Regression Using Tukey’s Biweight Criterion. Technometrics, 60(1), 36-47. https://doi.org/10.1080/00401706.2017.1305299

  • Croux, C., & Dehon, C. (2010). Influence functions of the Spearman and Kendall correlation measures. Statistical Methods & Applications, 19(4), 497-515. https://doi.org/10.1007/s10260-010-0142-z

  • Desboulets, L. D. D. (2018). A review on variable selection in regression analysis. Econometrics, 6(4), Article 45. https://doi.org/10.3390/econometrics6040045

  • Dhhan, W., Rana, S., & Midi, H. (2017). A high breakdown, high efficiency and bounded influence modified GM estimator based on support vector regression. Journal of Applied Statistics, 44(4), 700-714. https://doi.org/10.1080/02664763.2016.1182133

  • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348-1360. https://doi.org/10.1198/016214501753382273

  • Fan, J., & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5), 849-911. https://doi.org/10.1111/j.1467-9868.2008.00674.x

  • Fan, J., & Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. The Annals of Statistics, 32(3), 928-961. https://doi.org/10.1214/009053604000000256

  • Fan, J., & Song, R. (2010). Sure independence screening in generalized linear models with NP-dimensionality. The Annals of Statistics, 38(6), 3567-3604.

  • Fan, J., Samworth, R., & Wu, Y. (2009). Ultrahigh dimensional feature selection: beyond the linear model. The Journal of Machine Learning Research, 10, 2013-2038.

  • Frank, L. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35(2), 109-135.

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1.

  • Gao, X., & Huang, J. (2010). Asymptotic analysis of high-dimensional LAD regression with LASSO. Statistica Sinica, 1485-1506.

  • George, E. I. (2000). The variable selection problem. Journal of the American Statistical Association, 95(452), 1304-1308.

  • Ghaoui, L. E., Viallon, V., & Rabbani, T. (2010). Safe feature elimination for the lasso and sparse supervised learning problems. Machine Learning, 2000, 1-31.

  • Heinze, G., Wallisch, C., & Dunkler, D. (2018). Variable selection–a review and recommendations for the practicing statistician. Biometrical Journal, 60(3), 431-449. https://doi.org/10.1002/bimj.201700067

  • Huang, J., & Xie, H. (2007). Asymptotic oracle properties of SCAD-penalized least squares estimators. In Asymptotics: Particles, Processes and Inverse Problems (pp. 149-166). Institute of Mathematical Statistics. https://doi.org/10.1214/074921707000000337

  • Hubert, M., & Van der Veeken, S. (2008). Outlier detection for skewed data. Journal of Chemometrics: A Journal of the Chemometrics Society, 22(3‐4), 235-246. https://doi.org/10.1002/cem.1123

  • Hubert, M., Rousseeuw, P. J., & Branden, K. V. (2005). ROBPCA: a new approach to robust principal component analysis. Technometrics, 47(1), 64-79. https://doi.org/10.1198/004017004000000563

  • Leng, C., Lin, Y., & Wahba, G. (2006). A note on the lasso and related procedures in model selection. Statistica Sinica, 1273-1284.

  • Li, G., Peng, H., & Zhu, L. (2011). Nonconcave penalized M-estimation with a diverging number of parameters. Statistica Sinica, 391-419.

  • Li, R., Zhong, W., & Zhu, L. (2012). Feature screening via distance correlation learning. Journal of the American Statistical Association, 107(499), 1129-1139. https://doi.org/10.1080/01621459.2012.695654

  • Liebmann, B., Friedl, A., & Varmuza, K. (2009). Determination of glucose and ethanol in bioethanol production by near infrared spectroscopy and chemometrics. Analytica Chimica Acta, 642(1-2), 171-178. https://doi.org/10.1016/j.aca.2008.10.069

  • Liu, J., Wang, Y., Fu, C., Guo, J., & Yu, Q. (2016). A robust regression based on weighted LSSVM and penalized trimmed squares. Chaos, Solitons & Fractals, 89, 328-334. https://doi.org/10.1016/j.chaos.2015.12.012

  • Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust statistics: Theory and methods (with R). John Wiley & Sons.

  • Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3), 1436-1462. https://doi.org/10.1214/009053606000000281

  • Raymaekers, J., & Rousseeuw, P. J. (2019). Fast robust correlation for high-dimensional data. Technometrics, 1-15. https://doi.org/10.1080/00401706.2019.1677270

  • Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. Wiley.

  • Saldana, D. F., & Feng, Y. (2018). SIS: An R package for sure independence screening in ultrahigh dimensional statistical models. Journal of Statistical Software, 83(2), 1-25. https://doi.org/10.18637/jss.v083.i02

  • Shevlyakov, G., & Smirnov, P. (2011). Robust estimation of the correlation coefficient: An attempt of survey. Austrian Journal of Statistics, 40(1&2), 147-156. https://doi.org/10.17713/ajs.v40i1&2.206

  • Stuart, C. (2011). Robust regression. Durham University.

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

  • Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J., & Tibshirani, R. J. (2012). Strong rules for discarding predictors in lasso‐type problems. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(2), 245-266. https://doi.org/10.1111/j.1467-9868.2011.01004.x

  • Uraibi, H. S., Midi, H., & Rana, S. (2017). Selective overview of forward selection in terms of robust correlations. Communications in Statistics: Simulation and Computation, 46(7), 5479-5503. https://doi.org/10.1080/03610918.2016.1164862

  • Wang, H., Li, G., & Jiang, G. (2007). Robust regression shrinkage and consistent variable selection through the LAD-Lasso. Journal of Business & Economic Statistics, 25(3), 347-355. https://doi.org/10.1198/073500106000000251

  • Wang, M., Song, L., & Tian, G. L. (2015). SCAD-penalized least absolute deviation regression in high-dimensional models. Communications in Statistics-Theory and Methods, 44(12), 2452-2472. https://doi.org/10.1080/03610926.2013.781643

  • Wang, T., & Zhu, L. (2011). Consistent tuning parameter selection in high dimensional sparse linear regression. Journal of Multivariate Analysis, 102(7), 1141-1151. https://doi.org/10.1016/j.jmva.2011.03.007

  • Whittingham, M. J., Stephens, P. A., Bradbury, R. B., & Freckleton, R. P. (2006). Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology, 75(5), 1182-1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x

  • Wu, Y., & Liu, Y. (2009). Variable selection in quantile regression. Statistica Sinica, 19(2), 801-817.

  • Xiang, Z. J., & Ramadge, P. J. (2012). Fast lasso screening tests based on correlations. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2137-2140). IEEE Conference Publication. https://doi.org/10.1109/ICASSP.2012.6288334

  • Xie, H., & Huang, J. (2009). SCAD-penalized regression in high-dimensional partially linear models. The Annals of Statistics, 37(2), 673-696. https://doi.org/10.1214/07-AOS580

  • Zhang, Y., Li, R., & Tsai, C. L. (2010). Regularization parameter selections via generalized information criterion. Journal of the American Statistical Association, 105(489), 312-323. https://doi.org/10.1198/jasa.2009.tm08013

  • Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418-1429. https://doi.org/10.1198/016214506000000735

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (statistical methodology), 67(2), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2149-2020

Download Full Article PDF

Share this article

Recent Articles