Home / Regular Issue / JST Vol. 29 (3) Jul. 2021 / JST-2500-2021

 

Methylmercury Detection in Maternal Blood Samples by Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry

Amirah Abedinlah, Saliza Mohd Elias, Sarva Mangala Praveena, Suhaili Abu Bakar, Zulida Rejali and Juliana Jalaludin

Pertanika Journal of Science & Technology, Volume 29, Issue 3, July 2021

DOI: https://doi.org/10.47836/pjst.29.3.45

Keywords: LC-ICPMS, maternal blood, methylmercury determination, validation

Published on: 31 July 2021

Methylmercury (MeHg) is one type of mercury (Hg) species known to be very toxic to humans, especially pregnant women and their fetuses. This study aims to obtain and validate the optimum condition of liquid chromatography with inductively coupled plasma mass spectrometry (LC-ICP-MS) to test MeHg concentration. To date, there is limited research that is focused on the maternal blood MeHg samples using LC-ICP-MS in Malaysia. Before analysis, collected blood (500 µL) was placed into a 15 mL polypropylene test tube, followed by the addition of extractant solution [0.10% (v/v) HCl + 0.05% (m/v) L-cysteine + 0.10% (v/v) 2-mercaptoethanol] to the sample and sonicated for 15 minutes. The MeHg level was detected from the sample solution using the LC with Zorbax Eclipse XDB-C18 (4.6 x 12.5 mm, 5 µm) (Agilent Technologies) guard column and analytical column (4.6 x 150 mm, 5 µm) and was quantified by using the ICP-MS. The recovery of MeHg was in the range of 106 to 112% with RSD of less than 10%, followed by the LOD and LOQ values of 0.216 and 0.766 µg/L, respectively. The MeHg appeared at a retention time of fewer than 5 minutes. The results reported that the median (IQR) of maternal blood MeHg level in Malaysian pregnant women was 1.70 (8.90) µg/L, which is 9.7% lower than the LOD value and 11.2% higher than the guideline value of 3.5 µg/L of MeHg in maternal blood.

  • Abdullah, A., Hamzah, Z., Saat, A., Wood, A. K., & Alias, M. (2015). Accumulation of mercury (Hg) and methyl mercury (MeHg) concentrations in selected marine biota from Manjung Coastal Area. Malaysian Journal of Analytical Sciences, 19(4), 669-678.

  • Ahmad, N. I., Noh, M. F. M., Mahiyuddin, W. R. W., Jaafar, H., Ishak, I., Azmi, W. N. F. W., Veloo, Y., & Hairi, M. H. (2015). Mercury levels of marine fish commonly consumed in Peninsular Malaysia. Environmental Science and Pollution Research, 22(5), 3672-3686. https://doi.org/10.1007/s11356-014-3538-8.

  • Association of Analytical Committees. (2002). Appendix D: Guidelines for collaborative study procedures to validate characteristics of a method of analysis, official methods of analysis manual. Interlaboratory Collaborative Study, 1-12

  • Baharuddin, N., Saim, N., Osman, R., Zain, S. M., Juahir, H., & Saari, S. R. (2012). Determination of organic and inorganic mercury species in Sungai Kinta, Perak by reversed-phase high performance liquid chromatography (HPLC) on-line coupled with ICP-MS. Malaysian Journal of Analytical Sciences, 16(2), 134-141.

  • Basu, N., Tutino, R., Zhang, Z., Cantonwine, D. E., Goodrich, J. M., Somers, E. C., Rodriguez, L., Schnaas, L., Solano, M., Mercado, A., & Peterson, K. (2014). Mercury levels in pregnant women, children, and seafood from Mexico City. Environmental Research, 135, 63-69. https://doi.org/10.1016/j.envres.2014.08.029

  • Cusack, L. K., Smit, E., Kile, M. L., & Harding, A. K. (2017). Regional and temporal trends in blood mercury concentrations and fish consumption in women of child-bearing Age in the united states using NHANES data from 1999–2010. Environmental Health, 16(1), 1-11. https://doi.org/10.1186/s12940-017-0218-4

  • Donohue, A., Wagner, C. L., Burch, J. B., & Rothenberg, S. E. (2018). Blood total mercury and methylmercury among pregnant mothers in Charleston, South Carolina, USA. Journal of Exposure Science & Environmental Epidemiology, 28(5), 494-504. https://doi.org/10.1038/s41370-018-0033-1

  • EPA. (2002). Estimated per capita fish consumption in the United States (Report EPA-821-C-02-003). U.S. Environmental Protection Agency.

  • Gil, F., Hernández, A. F., Márquez, C., Femia, P., Olmedo, P., López-Guarnido, O., & Pla, A. (2011). Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Science of The Total Environment, 409(6), 1172-1180. https://doi.org/10.1016/j.scitotenv.2010.11.033

  • Hajeb, P., Selamat, J., Ismail, A., Bakar, F. A., Bakar, J., & Lioe, H. N. (2008). Hair mercury level of coastal communities in Malaysia: A linkage with fish consumption. European Food Research and Technology, 227(5), 13491355. https://doi.org/10.1007/s00217-008-0851-9

  • Huang, S. H., Weng, K. P., Lin, C. C., Wang, C. C., Lee, C. T. C., Ger, L. P., & Wu, M. T. (2017). Maternal and umbilical cord blood levels of mercury, manganese, iron, and copper in southern Taiwan: A cross-sectional study. Journal of the Chinese Medical Association, 80(7), 442-451. https://doi.org/10.1016/j.jcma.2016.06.007

  • Jeevanaraj, P., Hashim, Z., Elias, S. M., & Aris, A. Z. (2015). Total mercury (THg), lead (Pb), cadmium (Cd) and arsenic (As) in hair samples: Method validation and quantification among women at reproductive age in Selangor. International Journal of Science: Basic Applied Research, 24(4), 332-347.

  • Jeevanaraj, P., Hashim, Z., Elias, S. M., & Aris, A. Z. (2016). Mercury accumulation in marine fish most favoured by Malaysian women, the predictors and the potential health risk. Environmental Science and Pollution Research, 23, 23714-23729. https://doi.org/10.1007/s11356-016-7402-x

  • Jo, S., Woo, H. D., Kwon, H. J., Oh, S. Y., Park, J. D., Hong, Y. S., Pyo, H., Park, K. S., Ha, M., Kim, H., & Sohn, S. J. (2015). Estimation of the biological half-life of methylmercury using a population toxicokinetic model. International Journal of Environmental Research and Public Health, 12(8), 9054-9067. https://doi.org/10.3390/ijerph120809054.

  • Kim, D. S., Kim, G. B., Kang, T., & Ahn, S. (2011). Total and methyl mercury in maternal and cord blood of pregnant women in Korea. Toxicology and Environmental Health Sciences, 3(4), 254-257. https://doi.org/10.1007/s13530-011-0099-9

  • Lee, B. E., Hong, Y. C., Park, H., Ha, M., Koo, B. S., Chang, N., & Jo, S. J. (2010). Interaction between GSTM1/GSTT1 polymorphism and blood mercury on birth weight. Environmental health perspectives, 118(3), 437-443. https://dx.doi.org/10.1289%2Fehp.0900731.

  • Lemeshow, S., Hosmer, D. W., Klar, J., Lwanga, S. K., & World Health Organization. (1990). Adequacy of sample size in health studies. Wiley.

  • Mahaffey, K. R., Clickner, R. P., & Bodurow, C. C. (2004). Blood organic mercury and dietary mercury intake: National health and nutrition examination survey, 1999 and 2000. Environmental health perspectives, 112(5), 562-570. https://dx.doi.org/10.1289%2Fehp.6587.

  • Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: A worldwide concern. AMBIO: A Journal of the Human Environment, 36(1), 3-11. https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2

  • Miranda, M. L., Edwards, S., & Maxson, P. J. (2011). Mercury levels in an urban pregnant population in Durham County, North Carolina. International Journal of Environmental Research and Public Health, 8(3), 698-712. https://doi.org/10.3390/ijerph8030698.

  • Morrissette, J., Takser, L., St-Amour, G., Smargiassi, A., Lafond, J., & Mergler, D. (2004). Temporal variation of blood and hair mercury levels in pregnancy in relation to fish consumption history in a population living along the St.Lawrence River. Environmental Research, 95(3), 363-374. https://doi.org/10.1016/j.envres.2003.12.007.

  • Mortazavi, S. M. J., Mortazavi, G., & Paknahad, M. (2017). Methylmercury exposure in women of child-bearing age and children. Workplace Health & Safety, 65(2), 52-52. https://doi.org/10.1177%2F2165079916682746

  • National Research Council. (2000a). Scientific frontiers in developmental toxicology and risk assessment (2nd Ed.). National Academy of Sciences.

  • National Research Council. (2000b). Toxicological effects of methylmercury. National Academies Press (US). https://doi.org/10.17226/9899.

  • Olmedo, P., Pla, A., Hernandez, A. F., Lopez-Guarnido, O., Rodrigo, L., & Gil, F. (2010). Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 659(1-2), 60-67. https://doi.org/10.1016/j.aca.2009.11.056

  • Patel, N. B., Xu, Y., McCandless, L. C., Chen, A., Yolton, K., Braun, J., Jones, R. L., Dietrich, K. N., & Lanphear, B. P. (2019). Very low-level prenatal mercury exposure and behaviors in children: The HOME Study. Environmental Health, 18(1), 2-12. https://doi.org/10.1186/s12940-018-0443-5.

  • Praveena, S. M., De Burbure, C., Aris, A. Z., & Hashim, Z. (2013). Mini review of mercury contamination in environment and human with an emphasis on Malaysia: status and needs. Reviews on environmental health, 28(4), 195-202. https://doi.org/10.1515/reveh-2013-0011.

  • Razzaghi, H., Tinker, S. C., & Crider, K. (2014). Blood mercury concentrations in pregnant and nonpregnant women in the United States: National health and nutrition examination survey 1999-2006. American Journal of Obstetrics and Gynecology, 210(4), 357.e1-357.e9 https://doi.org/10.1016/j.ajog.2013.10.884.

  • Rice, D. C., Schoeny, R., & Mahaffey, K. (2003). Methods and rationale for derivation of a reference dose for methylmercury by the US EPA. Risk Analysis: An International Journal, 23(1), 107-115. https://doi.org/10.1111/1539-6924.00294

  • Rodrigues, J. L., de Souza, S. S., de Oliveira Souza, V. C., & Barbosa Jr, F. (2010). Methylmercury and inorganic mercury determination in blood by using liquid chromatography with inductively coupled plasma mass spectrometry and a fast sample preparation procedure. Talanta, 80(3), 1158-1163. https://doi.org/10.1016/j.talanta.2009.09.001

  • Sahrir, S., Abdullah, A. M., Ponrahono, Z., & Sharaai, A. H. (2019). Environmetric study on air quality pattern for assessment in Klang Valley, Malaysia. International Journal of Recent Technology and Engineering, 8(1S), 17-24.

  • Shim, Y. K., Lewin, M. D., Ruiz, P., Eichner, J. E., & Mumtaz, M. M. (2017). Prevalence and associated demographic characteristics of exposure to multiple metals and their species in human populations: The United States NHANES, 2007–2012. Journal of Toxicology and Environmental Health, Part A, 80(9), 502-512. https://doi.org/10.1080/15287394.2017.1330581.

  • Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2(1), 15-21. https://doi.org/10.4103%2F2229-5186.79345

  • Silbernagel, S. M., Carpenter, D. O., Gilbert, S. G., Gochfeld, M., Groth, E., Hightower, J. M., & Schiavone, F. M. (2011). Recognising and preventing overexposure to methylmercury from fish and seafood consumption: Information for physicians. Journal of Toxicology, 2011, 1-7. https://doi.org/10.1155/2011/983072

  • Soon, R., Dye, T. D., Ralston, N. V., Berry, M. J., & Sauvage, L. M. (2014). Seafood consumption and umbilical cord blood mercury concentrations in a multiethnic maternal and child health cohort. BMC Pregnancy and Childbirth, 14(1), 2-6. https://doi.org/10.1186/1471-2393-14-209.

  • Stern, A. H., & Smith, A. E. (2003). An assessment of the cord blood: Maternal blood methylmercury ratio: Implications for risk assessment. Environmental health perspectives, 111(12), 1465-1470. https://dx.doi.org/10.1289%2Fehp.6187.

  • Suhaimi, N. F., Jalaludin, J., & Juhari, M. A. M. (2020). The impact of traffic-related air pollution on lung function status and respiratory symptoms among children in Klang Valley, Malaysia. International Journal of Environmental Health Research, 1-12. https://doi.org/10.1080/09603123.2020.1784397

  • Tanase, I. G., Popescu, I. L., & Pana, A. (2006). An analytical method validation for atomic absorption spectrometry analysis of total zinc from insulin. Analele Universittati din Bucuresti–Chimie, 1, 45-50.

  • Taylor, C. M., Golding, J., & Emond, A. M. (2016). Blood mercury levels and fish consumption in pregnancy: Risks and benefits for birth outcomes in a prospective observational birth cohort. International Journal of Hygiene and Environmental Health, 219(6), 513-520. https://doi.org/10.1016/j.ijheh.2016.05.004

  • Vahter, M., Åkesson, A., Lind, B., Björs, U., Schütz, A., & Berglund, M. (2000). Longitudinal study of MeHg and inorganic mercury in blood and urine of pregnant and lactating women, as well as in umbilical cord blood. Environmental Research, 84(2), 186-194. https://doi.org/10.1006/enrs.2000.4098

  • Wadhwa, S. K., Kazi, T. G., Afridi, H. I., & Talpur, F. N. (2015). Interaction between carcinogenic and anti-carcinogenic trace elements in the scalp hair samples of different types of Pakistani female cancer patients. Clinica Chimica Acta, 439, 178-184. https://doi.org/10.1016/j.cca.2014.10.007.

  • Wells, E. M., Herbstman, J. B., Lin, Y. H., Jarrett, J., Verdon, C. P., Ward, C., Caldwell, K. L., Hibbeln, J. R., Witter, F. R., Halden, R. U., & Goldman, L. R. (2016). Cord blood methylmercury and fetal growth outcomes in Baltimore newborns: Potential confounding and effect modification by omega-3 fatty acids, selenium, and sex. Environmental Health Perspectives, 124(3), 373-379. https://doi.org/10.1289/ehp.1408596

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2500-2021

Download Full Article PDF

Share this article

Recent Articles