Home / Regular Issue / JST Vol. 30 (1) Jan. 2022 / JST-2894-2021

 

Assessment of Domestic Wastewaters as Potential Growth Media for Chlorella vulgaris and Haematococcus pluvialis

Yeong Hwang Tan, Mee Kin Chai, Yang Kai Ooi and Ling Shing Wong

Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022

DOI: https://doi.org/10.47836/pjst.30.1.31

Keywords: Chlorella vulgaris, Haematococcus pluvialis, microalgae, nutrient removal, wastewater treatment

Published on: 10 January 2022

Domestic wastewater contains chemical compounds that can be used as nutrients for microalgae. Removing these chemical compounds from wastewater by microalgae might help in reducing the operation cost of wastewater management while minimizing the cultivation cost for large-scale microalgae metabolite production. In this study, domestic wastewater collected from Indah Water Konsortium (IWK), Kuala Lumpur, Malaysia, was assessed as growth media for two types of microalgae, namely Chlorella vulgaris and Haematococcus pluvialis. The biomass growth and nutrient removal efficiency of total nitrogen (TN), total phosphorus (TP), and total ammonia (TAN) in different concentrations of diluted wastewater were measured. The results showed that biomass concentration (0.227 g/L), biomass productivity (0.029 g/L/day), and specific growth rate (0,284 d-1) yielded by C. vulgaris in 14 days of 80% wastewater were comparable to those microalgae grew in standard Bold’s Basal medium (BBM). Besides, C. vulgaris grew in 50% wastewater to remove TN, TP, and TAN with the highest removal efficiency (>88%). For H. pluvialis, the biomass concentration in all wastewater concentrations was lower than BBM. The removal efficiencies of TN and TP were lower than 55%, but more than 80% for removal efficiency of TAN in 50% and 80% wastewater. Hence, C. vulgaris has better growth performance and nutrient removal efficiency than H. pluvialis. These findings indicated that IWK domestic wastewater could be used as growth media for microalgae, especially C. vulgaris.

  • Abdullah, N. A., Ramli, S., Mamat, N. H., Khan, S., & Gomes, C. (2017). Chemical and biosensor technologies for wastewater quality management. International Journal of Advanced Research and Publications, 1(6), 1-10.

  • Aliman, K. H. (2019, February 28). Tariff review may relieve Indah Water’s structural deficit. The Edge Markets Weekly. https://www.theedgemarkets.com/article/tariff-review-may-relieve-indah-waters-structural-deficit

  • Alketife, A. M., Judd, S., & Znad, H. (2017). Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environmental Technology, 38(1), 94-102. https://doi.org/10.1080/09593330.2016.1186227

  • Alva, M. S., Luna-Pabello, V. M., Cadena, E., & Ortíz, E. (2013). Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresource Technology, 146, 744-748. https://doi.org/10.1016/j.biortech.2013.07.061

  • Beuckels, A., Smolders, E., & Muylaert, K. (2015). Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research, 77, 98-106. https://doi.org/10.1016/j.watres.2015.03.018

  • Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88, 3425-3431. https://doi.org/10.1016/j.apenergy.2010.12.064

  • Cheah, W. Y., Show, P. L., Juan, J. C., Chang, J. S., & Ling, T. C. (2018). Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Conversion and Management, 164, 188-197.

  • Cifuentes, A. S., González, M. A., Vargas, S., Hoeneisen, M., & González, N. (2003). Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biological Research, 36(3-4), 343-357. http://dx.doi.org/10.4067/S0716-97602003000300006

  • Deng, X. Y., Gao, K., Zhang, R. C., Addy, M., Lu, Q., Ren, H. Y., Chen, P., Liu, Y. H., & Ruan, R. (2017). Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 243, 417-425. https://doi.org/10.1016/j.biortech.2017.06.141

  • Hach. (2021, November 19). Water analysis handbook. Hach. https://www.hach.com/wah

  • Huang, Y., Lou, C., Luo, L., & Wang, X. C. (2021). Insight into nitrogen and phosphorus coupling effects on mixotrophic Chlorella vulgaris growth under stably controlled nutrient conditions. Science of the Total Environment, 752, Article 141747. https://doi.org/10.1016/j.scitotenv.2020.141747

  • Kang, C. D., An, J. Y., Park, T. H., & Sim, S. J. (2006). Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochemical Engineering Journal, 31(3), 234-238. https://doi.org/10.1016/j.bej.2006.08.002

  • Kim, G., Mujtaba, G., & Lee, K. (2016). Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae, 31(3), 257-266. https://doi.org/10.4490/algae.2016.31.8.18

  • Kiran, B., Pathak, K., Kumar, R., & Deshmukh, D. (2014). Cultivation of Chlorella sp. IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecological Engineering, 73, 326-330. https://doi.org/10.1016/j.ecoleng.2014.09.094

  • Kotoula, D., Iliopoulou, A., Irakleous-Palaiologou, E., Gatidou, G., Aloupi, M., Antonopoulou, P., Fountoulakis, M. S., & Stasinakis, A. S. (2020). Municipal wastewater treatment by combining in series microalgae Chlorella sorokiniana and macrophyte Lemna minor: Preliminary results. Journal of Cleaner Production, 271, Article 122704. https://doi.org/10.1016/j.jclepro.2020.122704

  • Lam, M. K., Yusoff, M. I., Uemura, Y., Lim, J. W., Khoo, C. G., Lee, K. T., & Ong, H. C. (2017). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103,197-207. https://doi.org/10.1016/j.renene.2016.11.032

  • Ledda, C., Tamiazzo, J., Borinb, M., & Adani, F. (2016). A simplified process of swine slurry treatment by primary filtration and Haematococcus pluvialis culture to produce low cost astaxanthin. Ecological Engineering, 90, 244-250. http://dx.doi.org/10.1016/j.ecoleng.2016.01.033

  • Lee, S. H., Ahn, C. Y., Jo, B. H., Lee, S. A., Park, J. Y., An, K. G., & Oh, H. M. (2013). Increased microalgae growth and nutrient removal using balanced N:P ratio in wastewater. Journal of Microbiology and Biotechnology, 23(1), 92-98. https://doi.org/10.4014/jmb.1210.10033

  • Li, F., Cai, M., Lin, M., Huang, X., Wang, J., Zheng, X., Wu, S., & An, Y. (2019). Accumulation of astaxanthin was improved by the nonmotile cells of Haematococcus pluvialis. BioMed Research International, 2019, Article 8101762. https://doi.org/10.1155/2019/8101762

  • Li, H., Zhang, Y., Liu, J., Shen, Z., Li, A., Ma, T., Feng, Q., & Sun, Y. (2019). Treatment of high-nitrate wastewater mixtures from MnO2 industry by Chlorella vulgaris. Bioresource Technology, 291(May), Article 121836. https://doi.org/10.1016/j.biortech.2019.121836

  • Ling, Y., Sun, L. P., Wang, S. Y., Lin, C. S. K., & Sun, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. https://doi.org/10.1016/j.bej.2019.05.012

  • Liu, Y., & Yildiz, I. (2019). Bioremediation of minkery wastewater and astaxanthin production by Haematococcus pluvialis. International Journal of Global Warming, 19(1-2), 145-157. https://doi.org/10.1504/IJGW.2019.101778

  • Loladze, I., & Elser, J. J. (2011). The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14(3), 244-250. https://doi.org/10.1111/j.1461-0248.2010.01577.x

  • Lu, W., Wang, Z., Wang, X., & Yuan, Z. (2015). Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 192, 382-388. https://doi.org/10.1016/j.biortech.2015.05.094

  • Nam, K., Lee, H., Heo, S. W., Chang, Y. K., & Han, J. I. (2017). Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. Journal of Applied Phycology, 29(3), 1171-1178. https://doi.org/10.1007/s10811-016-0987-0

  • Odjadjare, E. C., Mutanda, T., Chen, Y. F., & Olaniran, A. O. (2018). Evaluation of pre-chlorinated wastewater effluent for microalgal cultivation and biodiesel production. Water, 10, 1-13. https://doi.org/10.3390/w10080977

  • Pacheco, D., Rocha, A. C. S., Garcia, A., Bóia, A., Pereira, L., & Verdelhos, T. (2021). Municipal wastewater: A sustainable source for the green microalgae Chlorella vulgaris biomass production. Applied Science, 11(5), 2207-2223. https://doi.org/10.3390/app11052207

  • Pan, M., Zhu, X., Pan, G., & Angelidak, I. (2021). Integrated valorization system for simultaneous high strength organic wastewater treatment and astaxanthin production from Haematococcus pluvialis. Bioresource Technology, 326, Article 124761. https://doi.org/10.1016/j.biortech.2021.124761

  • Podevin, M., Francisci, D. D., Holdt, S. L., & Angelidak, I. (2015). Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. Journal of Applied Phycology, 27, 1415-1423. https://doi.org/10.1007/s10811-014-0468-2

  • Qi, M., Yang, Y., Zhang, X., Zhang, X., Wang, M., Zhang, W., Lu, X., & Tong, Y. (2020). Pollution reduction and operating cost analysis of municipal wastewater treatment in China and implication for future wastewater management. Journal of Cleaner Production, 253, Article 120003. https://doi.org/10.1016/j.jclepro.2020.120003

  • Ramsundar, P., Guldhe, A., Singh, P., & Bux, F. (2017). Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresource Technology, 227, 82-92. https://doi.org/10.1016/j.biortech.2016.12.037

  • Ren, Y., Deng, J., Huang, J., Wu, Z., Yi, Z., Bi, Y. G., & Chen, F. (2021). Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. Bioresource Technology, 340, Article 125736.

  • Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020). Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 2-11. https://doi.org/10.1080/26388081.2020.1715256

  • Ryu, B. G., Kim, E. J., Kim, H. S., Kim, J., Choi, Y. E., & Yang, J. W. (2014). Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnology and Bioprocess Engineering, 19(2), 201-210. https://doi.org/10.1007/s12257-013-0250-3

  • Sato, H., Nagare, H., Huynh, T. N. C., & Komatsu, H. (2015). Development of a new wastewater treatment process for resource recovery of carotenoids. Water Science and Technology, 72(7), 1191-1197. https://doi.org/10.2166/wst.2015.330

  • Shah, M. M. R. (2019). Astaxanthin production by microalgae Haematococcus pluvialis through wastewater treatment: Waste to resource. In S. Gupta & F. Bux (Eds.), Application of microalgae in wastewater treatment (pp. 17-39). Springer. https://doi.org/10.1007/978-3-030-13909-4_2

  • Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 7, Article 531. https://doi.org/10.3389/fpls.2016.00531

  • Sipaúba-Tavares, L. H., Berchielli-Moraisa, F. A., & Scardoeli-Truzzia, B. (2015). Growth of Haematococcus pluvialis Flotow in alternative media. Brazilian Journal of Biology, 75(4), 796-803. https://doi.org/10.1590/1519-6984.23013

  • Tan, X., Meng, J., Tang, Z., Yang, L., & Zhang, W. (2020). Optimization of algae mixotrophic culture for nutrients recycling and biomass/lipids production in anaerobically digested waste sludge by various organic acids addition. Chemosphere, 244, Article 125509. https://doi.org/10.1016/j.chemosphere.2019.125509

  • Tao, R., Kinnunen, V., Praveenkumar, R., Lakaniemi, A. M., & Rintala, J. A. (2017). Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. Journal of Applied Phycology, 29(6), 2845-2856. https://doi.org/10.1007/s10811-017-1175-6

  • Thomas, D. G., Minj, N., Mohan, N., & Rao, P. H. (2016). Cultivation of microalgae in domestic wastewater for biofuel applications - An upstream approach. Journal of Algal Biomass Utilization, 7(1), 62-70.

  • Trivedi, T., Jain, D., Mulla, N. S. S., Mamatha, S. S., Damare, S. R., Sreepada, R. A., Kumar, S., & Gupta, V. (2019). Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant. Renewable Energy, 139(3), 326-335. https://doi.org/10.1016/j.renene.2019.02.065

  • Umamaheswari, J., Kavitha, M. S., & Shanthakumar, S. (2020). Outdoor cultivation of Chlorella pyrenoidosa in paddy-soaked wastewater and a feasibility study on biodiesel production from wet algal biomass through in-situ transesterification. Biomass and Bioenergy, 143, Article 105853. https://doi.org/10.1016/j.biombioe.2020.105853

  • Wang, F., Gao, B., Wu, M., Huang, L., & Zhang, C. (2019). A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Research, 39, Article 101466. https://doi.org/10.1016/j.algal.2019.101466

  • Wang, Y., Guo, W., Yen, H. W., Ho, S. H., Lo, Y. C., Cheng, C. L., Ren, N., & Chang, J. S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 198, 619-625. https://doi.org/10.1016/j.biortech.2015.09.067

  • Wen, Y., He, Y., Ji, X., Li, S., Chen, L., Zhou, Y., Wang, M., &Chen, B. (2017). Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage. Bioresource Technology, 243, 247-253. https://doi.org/10.1016/j.biortech.2017.06.094

  • Whitton, R., LeMével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. https://doi.org/10.1016/j.watres.2015.12.054

  • Wiel, J. B. V., Mikulicz, J. D., Boysen, M. R., Hashemi, N., Kalgren, P., Nauman, L. M., Baetzold, S. J., Powell, G. G., He, H., & Hashemi, N. N. (2017). Characterization of Chlorella vulgaris and Chlorella protothecoides using multi-pixel photon counters in a 3D focusing optofluidic system. RSC Advance, 7, 4402-4408. https://doi.org/10.1039/C6RA25837A

  • Wu Y. H., Yang, J., Hu, H. Y. & Yu, Y. (2013). Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecological Engineering, 60, 155-159. https://doi.org/10.1016/j.ecoleng.2013.07.066

  • Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration and Biodegradation, 85, 506-510. https://doi.org/10.1016/j.ibiod.2013.05.016

  • Zhang, L., Lu, H., Zhang, Y., Li, B., Liu, Z., Duan, N., & Liu, M. (2016). Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. Journal of Applied Phycology, 28(2), 1031-1039. https://doi.org/10.1007/s10811-015-0640-3

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2894-2021

Download Full Article PDF

Share this article

Recent Articles