Home / Regular Issue / JST Vol. 31 (2) Mar. 2023 / JST-3486-2022


An Optimum Classifier Model with Fuzzy C-Means for Fire Detection Technology

Elaiyaraja Gandhi and Kumaratharan Narayanaswamy

Pertanika Journal of Science & Technology, Volume 31, Issue 2, March 2023

DOI: https://doi.org/10.47836/pjst.31.2.11

Keywords: Discrete wavelet transform, feature extraction, fuzzy c-means algorithm, SVM classifier

Published on: 20 March 2023

Flames recognition methodology is most important for completely diminishing the flame losses in different fired environmental conditions. However, there is delayed detection and lower accuracy in the various common detection methods. Thus, optimum image/video fire detection technology is proposed in this paper based on a support vector machine (SVM) with the fuzzy c-mean, discrete wavelet transform (DWT), and gray level co-occurrence matrices (GLCM) feature extraction for the detection of fires. This algorithm has been tested on various fire and non-fire images for classification accuracy. A performance evaluation of the proposed classifier algorithm and existing algorithms is compared, showing that the accuracy and other metrics of the proposed classifier algorithm are higher than other algorithms. Furthermore, simulation results show that the proposed classifier model is improved the forecast detection accuracy of fires.

  • Ansari, M. D., & Ghrera, S. P. (2017). Copy-move image forgery detection using ring projection and modified fast discrete haar wavelet transform. International Journal on Electrical Engineering and Informatics, 9(3), 542-552. https://doi.org/10.15676/ijeei.2017.9.3.9

  • Ansari, M. D., & Ghrera, S. P. (2018). Intuitionistic fuzzy local binary pattern for features extraction. International Journal of Information and Communication Technology, 13(1), 83-98. https://doi.org/10.1504/IJICT.2018.090435

  • Ansari, M. D., Mishra, A. R., & Ansari, F. T. (2018). New divergence and entropy measures for intuitionistic fuzzy sets on edge detection. International Journal of Fuzzy Systems, 20, 474-487. https://doi.org/10.1007/s40815-017-0348-4

  • Ansari, M. D., Mishra, A. R., Ansari, F. T., & Chawla, M. (2016). On edge detection based on new intuitionistic fuzzy divergence and entropy measures. In 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 689-693). IEEE Publishing. https://doi.org/10.1109/PDGC.2016.7913210

  • Chen, S., Du, H., Wu, L., Jin, J., & Qiu, B. (2017). Compressed sensing MRI via fast linearized preconditioned alternating direction method of multipliers. Biomedical Engineering Online, 16, Article 53. https://doi.org/10.1186/s12938-017-0343-x

  • Cohen, A. (1994). Ten lectures on wavelets, CBMS-NSF regional conference series in applied mathematics. Journal of Approximation Theory, 78(3), 460-461. https://doi.org/10.1006/jath.1994.1093

  • Coppo, P. (2015). Simulation of fire detection by infrared imagers from geostationary satellites. Remote Sensing of Environment, 162, 84-98. https://doi.org/10.1016/j.rse.2015.02.016

  • Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge University Press.

  • Dunnings, A. J., & Breckon, T. P. (2018). Experimentally defined convolutional neural network architecture variants for non-temporal real-time fire detection. In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 1558-1562). IEEE Publishing. https://doi.org/10.1109/ICIP.2018.8451657

  • Elaiyaraja, G., & Kumaratharan, N. (2015). Enhancing medical images by new fuzzy membership function median based noise detection and filtering technique. Journal of Electrical Engineering and Technology, 10(5), 2197-2204. https://doi.org/10.5370/JEET.2015.10.5.2197

  • Elaiyaraja, G., Kumaratharan, N., & Rao, T. C. S. (2022). Fast and efficient filter using wavelet threshold for removal of Gaussian noise from MRI/CT scanned medical images/color video sequence. IETE Journal of Research, 68(1),10-22. https://doi.org/10.1080/03772063.2019.1579679

  • Escalera, S., Pujol, O., & Radeva, P. (2009). Separability of ternary codes for sparse designs of error-correcting output codes. Pattern Recognition Letters, 30(3), 285-297. https://doi.org/10.1016/j.patrec.2008.10.002

  • Esfahlani, S. S. (2019). Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection. Journal of Industrial Information Integration, 15(9), 42-49. https://doi.org/10.1016/j.jii.2019.04.006

  • Fan, R. E., Chen, P. H., Lin, C. J., & Joachims, T. (2005). Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6(12), 1889-1918.

  • Filizzola, C., Corrado, R., Marchese, F., Mazzeo, G., Paciello, R., Pergola, N., & Tramutoli, V. (2016). RST-FIRES, an exportable algorithm for early-fire detection and monitoring: Description, implementation, and field validation in the case of the MSG-SEVIRI sensor. Remote Sensing of Environment, 186, 196-216. https://doi.org/10.1016/j.rse.2016.08.008

  • Fürnkranz, J. (2002). Round robin classification. The Journal of Machine Learning Research, 2, 721-747.

  • Garcia-Jimenez, S., Jurio, A., Pagola, M., De Miguel, L., Barrenechea, E., & Bustince, H. (2017). Forest fire detection: A fuzzy system approach based on overlap indices. Applied Soft Computing, 52, 834-842. https://doi.org/10.1016/j.asoc.2016.09.041

  • Genovese, A., Labati, R. D., Piuri, V., & Scotti, F. (2011). Virtual environment for synthetic smoke clouds generation. In 2011 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems Proceedings (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/VECIMS.2011.6053841

  • Gottuk, D. T., Lynch, J. A., Rose-Pehrsson, S. L., Owrutsky, J. C., & Williams, F. W. (2006). Video image fire detection for shipboard use. Fire Safety Journal, 41(4), 321-326. https://doi.org/10.1016/j.firesaf.2005.12.007

  • Hackner, A., Oberpriller, H., Ohnesorge, A., Hechtenberg, V., & Müller, G. (2016). Heterogeneous sensor arrays: Merging cameras and gas sensors into innovative fire detection systems. Sensors and Actuators B: Chemical, 231(8), 497-505. https://doi.org/10.1016/j.snb.2016.02.081

  • Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

  • Hou, R., Pan, M., Zhao, Y., & Yang, Y. (2019). Image anomaly detection for IoT equipment based on deep learning. Journal of Visual Communication and Image Representation, 64(10), 212-223. https://doi.org/10.1016/j.jvcir.2019.102599

  • Huang, X., & Du, L. (2020). Fire detection and recognition optimization based on virtual reality video image. IEEE Access, 8, 77951-77961. https://doi.org/10.1109/ACCESS.2020.2990224

  • Jia, Y., Yuan, J., Wang, J., Fang, J., Zhang, Q., & Zhang, Y. (2016). A saliency-based method for early smoke detection in video sequences. Fire Technology, 52, 1271-1292. https://doi.org/10.1007/s10694-014-0453-y

  • Kapil, S., Chawla, M., & Ansari, M. D. (2016). On K-means data clustering algorithm with genetic algorithm. In 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 202-206). IEEE Publishing. https://doi.org/10.1109/PDGC.2016.7913145

  • Kecman, V., Huang, T. M., & Vogt, M. (2005). Iterative single data algorithm for training kernel machines from huge data sets: Theory and performance. In L. Wang (Ed). Support Vector Machines: Theory and Applications (pp. 255-274). Springer. https://doi.org/10.1007/10984697_12

  • Koltunov, A., Ustin, S. L., Quayle, B., Schwind, B., Ambrosia, V. G., & Li, W. (2016). The development and first validation of the GOES early fire detection (GOES-EFD) algorithm. Remote Sensing of Environment, 184, 436-453. https://doi.org/10.1016/j.rse.2016.07.021

  • Li, P., & Zhao, W. (2020). Image fire detection algorithms based on convolutional neural networks. Case Studies in Thermal Engineering, 19, Article 100625. https://doi.org/10.1016/j.csite.2020.100625

  • Li, T. S. (2009). Applying wavelets transform and support vector machine for copper clad laminate defects classification. Computers and Industrial Engineering, 56(3), 1154-1168. https://doi.org/10.1016/j.cie.2008.09.018

  • Lin, Z., Chen, F., Niu, Z., Li, B., Yu, B., Jia, H., & Zhang, M. (2018). An active fire detection algorithm based on multi-temporal FengYun-3C VIRR data. Remote Sensing of Environment, 211, 376-387. https://doi.org/10.1016/j.rse.2018.04.027

  • López-García, D., Peñalver, J. M., Górriz, J. M., & Ruz, M. (2022). MVPAlab: A machine learning decoding toolbox for multidimensional electroencephalography data. Computer Methods and Programs in Biomedicine, 214, Article 106549. https://doi.org/10.1016/j.cmpb.2021.106549

  • Mallat, S.G (1989). A theory for multi-resolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674-93. https://doi.org/10.1109/34.192463

  • Meyer, Y. (1995). Wavelets and Operators. Cambridge University Press.

  • Muhammad, K., Ahmad, J., & Baik, S. W. (2018). Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing, 288, 30-42. https://doi.org/10.1016/j.neucom.2017.04.083

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.

  • Peng, Y., & Wang, Y. (2019). Real-time forest smoke detection using hand-designed features and deep learning. Computers and Electronics in Agriculture, 167, Article 105029. https://doi.org/10.1016/j.compag.2019.105029

  • Scholkopf, B., & Smola, A. J. (2018). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press.

  • Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443-1471. https://doi.org/10.1162/089976601750264965

  • Seydi, S. T., Saeidi, V., Kalantar, B., Ueda, N., & Halin, A. A. (2022). Fire-Net: A deep learning framework for active forest fire detection. Journal of Sensors, 2022, Article 8044390.

  • Sharma, A., Ansari, M. D., & Kumar, R. (2017). A comparative study of edge detectors in digital image processing. In 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC) (pp. 246-250). IEEE Publishing. https://doi.org/10.1109/ISPCC.2017.8269683

  • Singh, C., Walia, E., & Kaur, K. P. (2018). Enhancing color image retrieval performance with feature fusion and non-linear support vector machine classifier. Optik, 158(3), 127-141. https://doi.org/10.1016/j.ijleo.2017.11.202

  • Sumathi, S., & Paneerselvam, S. (2010). Computational Intelligence Paradigms: Theory & Applications using MATLAB. CRC Press. https://doi.org/10.1201/9781439809037

  • Xiong, G. (2021). Fuzzy c-means thresholding. MATLAB central file exchange. https://www.mathworks.com/matlabcentral/fileexchange/8351-fuzzy-c-means-thresholding

  • Zeng, Y., Zhou, Z., Chen, J., & Liu, W. (2006). An Improved UWB transmitted reference system based on wavelet decomposition. In IEEE Vehicular Technology Conference (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/VTCF.2006.203

  • Zhang, Q. X., Lin, G. H., Zhang, Y. M., Xu, G., & Wang, J. J. (2018). Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images. Procedia Engineering, 211(1), 441-446. https://doi.org/10.1016/j.proeng.2017.12.034

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Related Articles