Home / Regular Issue / JST Vol. 32 (2) Mar. 2024 / JST-4493-2023


Thermal Decomposition and Combustion Analysis of Malaysian Peat Soil Samples Using Coats Redfern Model-free Method

Dayang Nur Sakinah Musa, Hamidah Jamil, Mohd Zahirasri Mohd Tohir, Syafiie Syam and Ridwan Yahaya

Pertanika Journal of Science & Technology, Volume 32, Issue 2, March 2024

DOI: https://doi.org/10.47836/pjst.32.2.19

Keywords: Coats Redfern, combustion, peat, pyrolysis, thermal decomposition, thermogravimetric analysis

Published on: 26 March 2024

This research investigates the thermal decomposition behaviour of Malaysian peat soil through thermogravimetric analysis at varying heating rates. The study aims to analyse the thermal kinetics of decomposition for distinct peat soil types under inert and oxidative atmospheres while considering the role of available oxygen. The investigation encompasses virgin and agricultural peat, employing a non-isothermal thermogravimetric analysis technique to evaluate thermal decomposition characteristics and compute kinetic parameters using the Coats Redfern model-free approach. The pyrolysis profiles reveal three primary stages: moisture evaporation (30–180°C), organic component decomposition (200–500°C), and mineral decomposition (600–800°C). Virgin peat experiences a 43% mass loss during pyrolysis, while agricultural peat shows a 46% mass loss, emphasising insights into thermal behaviour and consistent decomposition patterns across peat types. Combustion profiles exhibit three main stages: dehydration (30–180°C), oxidative pyrolysis transforming organic matter into volatiles and char (200–300°C), and subsequent char oxidation (300–500°C). The study determines average activation energy trends, measuring 14.87 kJ/mol for virgin peat and 5.37 kJ/mol for agricultural peat under an inert atmosphere, and 28.89 kJ/mol for virgin peat and 36.66 kJ/mol for agricultural peat under an oxidative atmosphere. The research introduces an innovative two-step reaction model elucidating peat thermal decomposition kinetics (excluding dehydration), including a discussion on the impact of oxygen availability on kinetic parameters. These findings essential peat fire smouldering modelling, contributing to peat combustion behaviour for effective strategies to reduce peat fire risks.

  • Adon, R., Bakar, I., Wijeyesekera, D. C., & Zainorabidin, A. (2012). Overview of the sustainable uses of peat soil in malaysia with some relevant geotechnical assessments. International Journal of Integrated Engineering, 4(4), 38-46.

  • Azmi, N. A. C., Apandi, N. M., & Ahmad, A. S. (2021). Carbon emissions from the peat fire problem - A review. Environmental Science and Pollution Research, 28(14), 16948-16961. https://doi.org/10.1007/s11356-021-12886-x

  • Cancellieri, D., Leroy-Cancellieri, V., Leoni, E., Simeoni, A., Kuzin, A. Y., Filkov, A. I., & Rein, G. (2012). Kinetic investigation on the smouldering combustion of boreal peat. Fuel, 93, 479-485. https://doi.org/10.1016/j.fuel.2011.09.052

  • Chen, H., Zhao, W., & Liu, N. (2011). Thermal analysis and decomposition kinetics of Chinese forest peat under nitrogen and air atmospheres. Energy and Fuels, 25(2), 797-803. https://doi.org/10.1021/ef101155n

  • Dommain, R., Couwenberg, J., & Joosten, H. (2011). Development and carbon sequestration of tropical peat domes in south-east Asia: Links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science Reviews, 30(7-8), 999-1010. https://doi.org/10.1016/j.quascirev.2011.01.018

  • Dong, H., Hu, X., Yu, A., Wang, W., Zhao, Q., Wei, H., Yang, Z., Wang, X., & Luo, C. (2023). Study on the mechanism of an enteromorpha-based compound inhibitor for inhibiting the spontaneous combustion of coal using in situ infrared spectroscopy and thermal analysis kinetics. Journal of Environmental Chemical Engineering, 11(2), Article 109577. https://doi.org/10.1016/j.jece.2023.109577

  • Fawzi, N. I., Qurani, I. Z., & Darajat, R. (2021). Alleviating peatland fire risk using water management trinity and community involvement. In IOP Conference Series: Earth and Environmental Science (Vol. 914, No. 1, p. 012037). IOP Publishing. https://doi.org/10.1088/1755-1315/914/1/012037

  • Gogoi, M., Konwar, K., Bhuyan, N., Borah, R. C., Kalita, A. C., Nath, H. P., & Saikia, N. (2018). Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresource Technology Reports, 4, 40-49. https://doi.org/10.1016/j.biteb.2018.08.016

  • Goldstein, J. E., Graham, L., Ansori, S., Vetrita, Y., Thomas, A., Applegate, G., Vayda, A. P., Saharjo, B. H., & Cochrane, M. A. (2020). Beyond slash-and-burn: The roles of human activities, altered hydrology and fuels in peat fires in Central Kalimantan, Indonesia. Singapore Journal of Tropical Geography, 41(2), 190-208. https://doi.org/10.1111/sjtg.12319

  • Hänninen, K. I. (2017). A chemical mechanism for self-ignition in a peat stack. Environment and Ecology Research, 5(1), 6-12. https://doi.org/10.13189/eer.2017.050102

  • Hu, Y., Fernandez-Anez, N., Smith, T. E. L., & Rein, G. (2018). Review of emissions from smouldering peat fires and their contribution to regional haze episodes. International Journal of Wildland Fire, 27(5), 293-312. https://doi.org/10.1071/WF17084

  • Huang, X., & Rein, G. (2014). Smouldering combustion of peat in wildfires: Inverse modelling of the drying and the thermal and oxidative decomposition kinetics. Combustion and Flame, 161(6), 1633-1644. https://doi.org/10.1016/j.combustflame.2013.12.013

  • Jayaraman, K., & Gökalp, I. (2015). Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Conversion and Management, 89, 83-91. https://doi.org/10.1016/j.enconman.2014.09.058

  • Jayaraman, K., Kok, M. V., & Gokalp, I. (2017a). Combustion properties and kinetics of different biomass samples using TG–MS technique. Journal of Thermal Analysis and Calorimetry, 127(2), 1361-1370. https://doi.org/10.1007/s10973-016-6042-1

  • Jayaraman, K., Kok, M. V., & Gokalp, I. (2017b). Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renewable Energy, 101, 293-300. https://doi.org/10.1016/j.renene.2016.08.072

  • Jayaraman, K., Kök, M. V., & Gökalp, I. (2020). Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach. Energy, 204, Article 117905. https://doi.org/10.1016/j.energy.2020.117905

  • Khelkhal, M. A., Lapuk, S. E., Buzyurov, A. V., Krapivnitskaya, T. O., Peskov, N. Yu., Denisenko, A. N., & Vakhin, A. V. (2022). Thermogravimetric study on peat catalytic pyrolysis for potential hydrocarbon generation. Processes, 10(5), Article 974. https://doi.org/10.3390/pr10050974

  • Khelkhal, M. A., Lapuk, S. E., Ignashev, N. E., Eskin, A. A., Glyavin, M. Y., Peskov, N. Y., Krapivnitskaia, T. O., & Vakhin, A. V. (2021). A thermal study on peat oxidation behavior in the presence of an iron-based catalyst. Catalysts, 11(11), Article 1344. https://doi.org/10.3390/catal11111344

  • Khoroshavin, L. B., Medvedev, O. A., Belyakov, V. A., & Bezzaponnaya, O. V. (2012). Peat Fires and their Extinguishing. ResearchGate. https://www.researchgate.net/publication/324694093_PEAT_FIRES_AND_THEIR_EXTINGUISHING

  • Kosyakov, D. S., Ul’yanovskii, N. V., Latkin, T. B., Pokryshkin, S. A., Berzhonskis, V. R., Polyakova, O. V., & Lebedev, A. T. (2020). Peat burning - An important source of pyridines in the earth atmosphere. Environmental Pollution, 266, Article 115109. https://doi.org/10.1016/j.envpol.2020.115109

  • Lourenco, M., Fitchett, J. M., & Woodborne, S. (2022). Peat definitions: A critical review. Progress in Physical Geography, 47(4), 506-520. https://doi.org/10.1177/03091333221118353

  • Melling, L. (2015). Peatland in Malaysia. In Tropical Peatland Ecosystems (pp. 59-73). Springer. https://doi.org/10.1007/978-4-431-55681-7_4

  • Mezbahuddin, S., Nikonovas, T., Spessa, A., Grant, R. F., Imron, M. A., Doerr, S. H., & Clay, G. D. (2023). Accuracy of tropical peat and non-peat fire forecasts enhanced by simulating hydrology. Scientific Reports, 13(1), 1-10. https://doi.org/10.1038/s41598-022-27075-0

  • Mishra, R. K., & Mohanty, K. (2018). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology, 251, 63-74. https://doi.org/10.1016/j.biortech.2017.12.029

  • Othman, J., Sahani, M., Mahmud, M., & Ahmad, M. K. S. (2014). Transboundary smoke haze pollution in Malaysia: Inpatient health impacts and economic valuation. Environmental Pollution, 189, 194-201. https://doi.org/10.1016/j.envpol.2014.03.010

  • Palamba, P., Ramadhan, M. L., Pamitran, A. S., Prayogo, G., Kosasih, E. A., & Nugroho, Y. S. (2018). Drying Kinetics of Indonesian Peat. International Journal of Technology, 9(5), Article 1006. https://doi.org/10.14716/ijtech.v9i5.805

  • Prat, N., Belcher, C. M., Hadden, R. M., Rein, G., & Yearsley, J. M. (2015). A laboratory study of the effect of moisture content on the spread of smouldering in peat fires. Flamma, 6(1), 35-38.

  • Qin, Y., Musa, D. N. S., Lin, S., & Huang, X. (2022). Deep peat fire persistently smouldering for weeks: A laboratory demonstration. International Journal of Wildland Fire, 32(1), 86-98. https://doi.org/10.1071/wf22143

  • Rein, G. (2013). Smouldering fires and natural fuels. In Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (pp. 15-33). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118529539.ch2

  • Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., & Van Cappellen, P. (2016). Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 429, 75-84. https://doi.org/10.1016/j.chemgeo.2016.03.010

  • Sundari, S., Hirano, T., Yamada, H., Kusin, K., & Limin, S. (2012). Effect of groundwater level on soil respiration in tropical peat swamp forests. Journal of Agricultural Meteorology, 68(2), 121-134. https://doi.org/10.2480/agrmet.68.2.6

  • Taufik, M., Widyastuti, M. T., Sulaiman, A., Murdiyarso, D., Santikayasa, I. P., & Minasny, B. (2022). An improved drought-fire assessment for managing fire risks in tropical peatlands. Agricultural and Forest Meteorology, 312, Article 108738. https://doi.org/10.1016/j.agrformet.2021.108738

  • Turetsky, M. R., Benscoter, B., Page, S., Rein, G., Van Der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, 11-14. https://doi.org/10.1038/ngeo2325

  • Varol, M., Atimtay, A. T., Bay, B., & Olgun, H. (2010). Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochimica Acta, 510(1-2), 195-201. https://doi.org/10.1016/j.tca.2010.07.014

  • Zhao, W., Chen, H., Liu, N., & Zhou, J. (2014). Thermogravimetric analysis of peat decomposition under different oxygen concentrations. Journal of Thermal Analysis and Calorimetry, 17(1), 489-497. https://doi.org/10.1007/s10973-014-3696-4

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Related Articles