e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 44 (4) Nov. 2021 / JTAS-2253-2021


Growth of Acacia mangium at Different Stand Ages and Soil Physicochemical Properties in Sarawak, Malaysia

Afifi Nazeri, Ismail Jusoh and Mohad Effendi Wasli

Pertanika Journal of Science & Technology, Volume 44, Issue 4, November 2021


Keywords: Acacia mangium plantation, growth, principal component analysis, soil properties, stand age

Published on: 2 November 2021

The information on soil physicochemical properties is vital for the optimum wood biomass production in forest plantation management. The objective of this study was to determine the topsoil physicochemical properties under different Acacia mangium stand ages and their effect on the growth parameters. Five plots were established randomly within each five different stand ages. In all sample plots, the diameter at breast height (DBH) and the total height of standing trees were measured. Soil samples were collected at a depth of 0 to 20 cm at three random points in each plot, then mixed to get a composite before determining physical and chemical properties. DBH mean and the total height of A. mangium increased as stand age increased. The mean annual volume increment maximised at the 8.5 years old stand with 27.9 mha-1 yr-1. Survival rate and stem density decreased as stand age increased. Principal component analysis (PCA) results showed that the most important soil physical properties were soil organic matter, silt and sand contents, bulk density, and moisture content. For soil chemical parameters, exchangeable magnesium (Mg), cation exchange capacity (CEC), total carbon (TC), total nitrogen (TN), and carbon-to-nitrogen (C/N) ratio were the influential soil variables. Soil pH, available phosphorus (P), and clay content were negatively correlated with the growth development of A. mangium trees. Observations suggest that multiple soil variables are essential for the success of the A. mangium plantation.

  • American Society for Testing and Materials. (2019). ASTM Standard D2216-19: Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. ASTM International.

  • Arentz, F., Boer, E., Lemmens, R. H. M. J., & Illic, J. (1995). Acacia Miller. In R. H. M. J. Lemmens, I. Soerianegara, & W. C. Wong (Eds.), Plant resources of South-East Asia. No. 5(2): Timber trees: Minor commercial timbers (pp. 27-38). Backhuys Publishers.

  • Berry, W., Ketterings, Q., Antes, S., Page, S., Russell-Anelli, J., Rao, R., & DeGloria, S. (2007). Soil texture. Cornell University Cooperative Extension, 43(2), 1–2.

  • Bini, D., dos Santos, C. A., Bouillet, J. P., de Morais Gonçalves, J. L., & Cardoso, E. J. B. N. (2013). Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: Evolution of soil and litter microbial and chemical attributes during early stages of plant development. Applied Soil Ecology, 63, 57- 66.

  • Binkley, D., & Fisher, R. F. (2019). Ecology and management of forest soils (5th ed.). Wiley-Blackwell.

  • Binkley, D., & Giardina, C. (1998). Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry, 42, 89-106.

  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis: Part 1 Physical and mineralogical methods (2nd ed., pp. 363-375). American Society of Agronomy.

  • Bonifacio, E., Santoni, S., Cudlin, P., & Zanini, E. (2008). Effect of dominant ground vegetation on soil organic matter quality in a declining mountain spruce forest of central Europe. Boreal Environment Research, 13(2), 113-120.

  • Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production. Food and Agriculture Organization.

  • Bray, R. H., & Kurtz, L. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59(1), 39-45.

  • Bremner, J. M. (1996). Nitrogen–total. In J. M. Bigham (Ed.), Methods of soil analysis, Part 3: Chemical methods (pp. 1085–1121). Soil Science Society of America.

  • Cao, Y. S., Lin, Y. B., Rao, X. Q., & Fu, S. L. (2011). Effects of artificial nitrogen and phosphorus deposition on soil respiration in two plantations in southern China. Journal of Tropical Forest Science, 23(2), 110-116.

  • Eni, D. D., Iwara, A. I., & Offiong, R. A. (2012). Analysis of soil-vegetation interrelationship in a South-Southern secondary forest of Nigeria. International Journal of Forestry Research, 2012, 469326.

  • Fenn, M. E., Perea-Estrada, V. M., De Bauer, L. I., Pérez-Suárez, M., Parker, D. R., & Cetina-Alcalá, V. M. (2006). Nutrient status and plant growth effects of forest soils in the Basin of Mexico. Environmental Pollution, 140(2), 187-199.

  • Fernandez, J. Q. P., Dias, L. E., Barros, N. F., Novais, R. F., & Moraes, E. J. (2000). Productivity of Eucalyptus camaldulensis affected by rate and placement of two phosphorus fertilisers to a Brazilian Oxisol. Forest Ecology and Management, 127(1-3), 93-102.

  • Franco, A. A., & de Faria, S. M. (1997). The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biology and Biochemistry, 29(5-6), 897–903.

  • Gardner, D. (2009). Sarawak Planted Forest (Pulp and Paper) project, Bintulu Information Memorandum. Pöyry Forest Industry Pte Ltd.

  • Gee, G. E., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Method of soil analysis. Part 1: Physical and mineralogical methods (2nd ed., pp. 383-411). American Society of Agronomy.

  • Hardiyanto, E. B., & Wicaksono, A. (2008). Inter-rotation site management, stand growth and soil properties in Acacia mangium plantations in South Sumatra, Indonesia. In E. K. S. Nambiar (Ed.), Proceedings of Workshops Site Management and Productivity in Tropical Plantation Forests (pp. 107-122). Center for International Forestry Research (CIFOR).

  • Harwood, C. E., & Nambiar, E. K. S. (2014). Productivity of Acacia and Eucalypt plantation in Southeast Asia. 2. Trends and variations. International Forestry Review, 16(2), 249-260.

  • Hashim, M. N., Mohd Hazim, M. A., & Syafinie, A. M. (2015). Strategic forest plantation establishment in Malaysia for future product development and utilisation. International Journal of Agriculture, Forestry and Plantation, 1, 14-24.

  • Heriansyah, I., Miyakuni, K., Kato, T., Kiyono, Y., & Kanazawa, Y. (2007). Growth characteristics and biomass accumulations of Acacia mangium under different management practices in Indonesia. Journal of Tropical Forest Science, 19(4), 226-235.

  • Ishizuka, S., Tanaka, S., Sakurai, K., Hirai, H., & Hirotani, H. (1998). Characterisation and distribution of soils at Lambir Hills National Park in Sarawak, Malaysia, with special reference to soil hardness and soil texture. TROPICS, 8(1+2), 31-44.

  • Jamil, N., Sajjad, N., Ashraf, H., Masood, Z., Bazai, Z.A., Khan, R., & Khan, R. (2016). Physical and chemical properties of soil quality indicating forests productivity: A review. American-Eurasian Journal of Toxicological Sciences, 8(2), 60–68.

  • Kadir, W. R., Kadir, A. A., Van Cleemput, O., & Rahman, Z. A. (1998). Field grown Acacia mangium: How intensive is root growth?. Journal of Tropical Forest Science, 10(3), 283-291.

  • Krisnawati, H., Kallio, M., & Kanninen, M. (2011). Acacia mangium Willd: Ecology, silviculture and productivity. Center for International Forestry Research (CIFOR).

  • Lee, K. L., Ong, K. H., Jie, P., King, H., Chubo, J. K., Shan, D., & Su, A. (2015). Stand productivity, carbon content, and soil nutrients in different stand ages of Acacia mangium in Sarawak, Malaysia. Turkish Journal of Agriculture and Forestry, 39(1), 154–161.

  • Li, T., Gao, J., Hong, J., Xie, Y., Gao, Z., Meng, H., Li, L., & Meng, L. (2018). Variation of nutrients and selected soil properties in reclaimed soil of different ages at a coal-mining subsidence area on the Loess Plateau, China. Ekoloji, 27(106), 547-554.

  • Majid, N. M., & Paudyal, B. K. (1999). Growth response of Acacia mangium plantation to N, P, K fertilisation in Kemasul and Kerling, Peninsular Malaysia. Journal of Tropical Forest Science, 11(2), 356-367.

  • Matali, S., & Metali, F. (2015). Selected soil physico-chemical properties in the Acacia mangium plantation and the adjacent heath forest at Andulau Forest Reserve. Malaysian Journal of Soil Science, 19, 45-58.

  • McKenzie, N., Jacquier, D., Isbell, R., & Brown, K. (2004). Australian soils and landscapes: An illustrated compendium. CSIRO Publishing.

  • Midgley, S. J., & Turnbull, J. W. (2003). Domestication and use of Australian acacias: Case studies of five important species. Australian Systematic Botany, 16(1), 89–102.

  • Nath, T. N. (2014). Soil texture and total organic matter content and its influences on soil water holding capacity of some selected tea growing soils in Sivasagar district of Assam, India. International Journal of Chemical Sciences, 12, 1419-1429.

  • Nurudin, M., Ohta, S., Hardiyanto, E. B., Mendham, D., Wicaksono, A., Heriyanto, J., & Watanabe, M. (2013). Relationships between soil characteristics and productivity of Acacia mangium in South Sumatra. Tropics, 22(1), 1-12.

  • Nykvist, N., & Sim, B. L. (2009). Changes in carbon and inorganic nutrients after clear-felling and rainforest in Malaysia and planting with Acacia mangium. Journal of Tropical Forest Science, 21, 98–112.

  • Paramananthan, S. (2000). Soils of Malaysia: Their characteristics and identification (Vol. 1). Academy of Sciences Malaysia.

  • Perumal, M., Wasli, M. E., Ho, S. Y., Lat, J., & Sani, H. (2015). Soil morphological and physicochemical properties at reforestation sites after enrichment planting of Shorea macrophylla in Sampadi Forest Reserve, Sarawak, Malaysia. Borneo Journal of Resource Science and Technology, 5(2), 28-43.

  • Philip, M. S. (1994). Measuring trees and forests (2nd ed.). CAB International.

  • Rigatto, P. A., Dedecek, R. A., & Monteiro de Matos, J.L. (2004). Influência dos atributos do solo sobre aqualidade da madeira de Pinus taeda para produção de celulose kraft [Influence of soil attributes on quality of Pinus taeda wood for cellulose kraft production]. Revista Árvore, 28(2), 267–273. 

  • Salehi, A., & Maleki, M. (2012). Evaluation of soil physical and chemical properties in Poplar plantations in north of Iran. Ecologia Balkanica, 4(2), 69-76.

  • Schulte, E. E., Kaufmann, C. & Peter, B. J. (1991). The influence of sample size and heating time on soil weight loss-on-ignition. Communications in Soil Science and Plant Analysis, 22(1-2), 159–168

  • Slattery, W. J., Conyers, M. K., & Aitken, R. L. (1999). Soil pH, aluminium, manganese and lime requirement. In K. I. Peverill, L. A. Sparrow, D. J. Reuter (Eds.), Soil analysis: An interpretation manual (pp. 103-128). CSIRO Publishing.

  • Soil Survey Report. (1996). Detailed reconnaissance soil survey report of the Daiken Forest Plantation Bintulu. Agrosol Soil Survey Services (M) Sdn. Bhd.

  • Soil Survey Staff. (1999). Soil taxonomy: A basic system of soil classifications for making and interpreting soil survey (2nd ed.). United States Department of Agriculture.

  • Tanaka, S., Kano, S., Lat, J., Effendi, W. M.. Tan, N. P., Arifin, A., & Kendawang, J. J. (2015). Effects of Acacia mangium on morphological and physicochemical properties of soil. Journal of Tropical Forest Science, 27(3), 357–368.

  • Wasli, M. E., Tanaka, S., Kendawang, J. J., Seman, L., Unang, B., Lat, J., Abdul, A., Morooka, Y., & Sakurai, K. (2009). Vegetation conditions and soil fertility of fallow lands under intensified shifting cultivation systems in Sarawak, Malaysia. Tropics, 18(3), 115-126.

  • Zás, R., & Serrada, R. (2003). Foliar nutrient status and nutritional relationships of young Pinus radiata D. Don plantations in northwest Spain. Forest Ecology Management, 174(1-3), 167-176.

  • Zhang, R., & Wienhold, B. J. (2002). The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH. Nutrient Cycling in Agroecosystems, 63(2-3), 251-254.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Recent Articles